
Overview

Dynamic HTML

Dynamic HTML (DHTML) is an all-in-one word for web pages that use
Hypertext Markup Language (HTML), Cascading Style Sheets (CSS), and rely
on JavaScript to make the web pages interactive. DHTML is a feature of
Netscape Communicator 4.0, and Microsoft Internet Explorer 4.0 and 5.0
and is entirely a "client-side" technology. It relies only the browser
for the display and manipulation of the web pages and is unrelated to
other client-side technologies like Java, Flash.

Someone once asked me for a non-technical definition of DHTML, my reply
was:

"A way to build web interfaces by using the built-in capabilities of
Netscape and Internet Explorer"

DHTML excels in creating low-bandwidth effects that enhance a web page's
functionality. It can be used to create animations, games, applications,
provide new ways of navigating through web sites, and create out-of-this
world page layouts that simply aren't possible with just HTML. Although
many of features of DHTML can be duplicated with either Flash or Java,
DHTML provides an alternative that does not require plugins and embeds
seamlessly into a web page.

Although the underlying technologies of DHTML (HTML, CSS, JavaScript)
are standardized, the manner in which Netscape and Microsoft have
implemented them differ dramatically. For this reason, writing DHTML
pages that work in both browsers (referred to as cross-browser DHTML)
can be a very complex issue.

Links for more DHTML information:

Microsoft DHTML Documentation
http://msdn.microsoft.com/workshop/author/default.asp

Netscape DHTML Documentation
http://developer.netscape.com/docs/manuals/communicator/dynhtml/index.htm

Cascading Style Sheets

Cascading Style Sheets (CSS) is an addition to HTML that gives
developers a sophisticated manner to structure web pages. It does this
by separating the content of a web page (the text) from the display (the
colors, styles, and positioning).

Cascading Style Sheets Positioning (CSSP) is an extension to CSS that

2

allows pixel-level control over the position of HTML elements.

Links for more CSS information:

W3C CSS-Positioning
http://www.w3.org/TR/WD-positioning.html

Builder.com's CSS Guide
http://builder.cnet.com/Authoring/CSS/index.html

JavaScript

Contrary to its name, JavaScript is very much unrelated to Java.
JavaScript is scripting language built into web browses that controls
HTML elements, whereas Java is a high-level programming language for
building cross-platform applications (among other things like Applets
which are Java programs that can be displayed in a web page).

JavaScript first appeared in Netscape 2.0, and was primarily for
scripting the contents of a web page, and providing added functionality
to HTML forms, frames, and windows. Netscape 3.0 added more features
like image rollovers and audio/video controls. Microsoft Internet
Explorer 3.0 (released shortly after Netscape 3.0) also implemented
JavaScript, but marketed it as JScript which is essentially the same as
JavaScript with a few minor incompatibilities that Microsoft threw in to
lure developers into using their version of JavaScript.

Extensions to JavaScript were added in Netscape 4.0 and Internet
Explorer 4.0 to give developers a way to manipulate DHTML (HTML elements
that use CSS). However these extensions were not standardized before the
release of the 2 browsers. And as a result we now have two versions of
JavaScript that are largely incompatible.

Links for more JavaScript information:

Netscape JavaScript Guide
http://developer.netscape.com/docs/manuals/communicator/jsguide4/index.htm

JavaScript Reference
http://developer.netscape.com/docs/manuals/communicator/jsref/index.htm

Microsoft JScript
http://msdn.microsoft.com/scripting/default.htm

The Dynamic Duo

The Dynamic Duo, is a tutorial written by me, Dan Steinman, and is the
result of my experimentation and successes in creating Cross-Browser
DHTML.

This tutorial focuses primarily on the JavaScript issues involved in
DHTML. It only covers the portions of CSSP and JavaScript that can be
used in both Netscape and Internet Explorer. By no means does this
tutorial cover everything, or necessarily offer the best solutions to a

3

particular task, but rather the things that I have tried and have had
good results with.

If you are not unfamiliar with JavaScript and CSS, this tutorial may not
be the best starting point for you. However, I do start out slowly and
cover much of the ground knowledge needed to understand how DHTML works.
The programming concepts in this this tutorial are not extremely
complex. However, cross-browser DHTML requires a level of debugging
skills that can be quite daunting to a beginner. You will be working
with browsers that are only partially compatible, and computer languages
that are only partially implemented. You will encounter bugs and
limitations not only between the 2 browsers, but between different
operating systems, as well as between incremental versions of the
browsers. This tutorial only scratches the surface of the problems that
you will encounter with building your own DHTML pages... and do believe
me on this one, I am not kidding.

With that said, I have done my best to lay down a set of guidelines that
makes cross-browser DHTML feasible. Following the tips and techniques in
this tutorial you can create just about anything you can think of. By
time you are finished reading, you will understand nearly all the
concepts involved in DHTML, learn a rich set of JavaScript programming
techniques using my DHTML API (The DynLayer), as well as learn how to
build your very own DHTML objects for creating reusable widgets and
components for your website.

I'd appreciate any comments or suggestions you have about this tutorial,
I'm always looking for ways to improve it. Also, I'd be very gracious of
any contributions you have, including modifications to any code in this
tutorial, or any DHTML objects that you've created and want to share
with other people. And if you have built a website, game, or application
using this tutorial, I would be more than happy to provide a link from
my DHTML Resources links page.

4

Cascading Style Sheets Positioning

Cascading Style Sheets (CSS) are the basis for Dynamic HTML in both
Netscape Navigator 4.0 and Internet Explorer 4.0. CSS allows a way to
create a set of "styles" that define how the elements on your page are
rendered. Cascading Style Sheets Positioning (CSS-P) is an extension to
CSS that gives a developer pixel-level control over the location of
anything on the screen. Due to the fact there are already good CSS and
CSS-P documentation and tutorials I won't be duplicating them - rather
I'll be building on top of them.

Here are 2 documents/tutorials that explain the syntax of CSS and CSS-P:

W3C CSS-Positioning
http://www.w3.org/TR/WD-positioning.html

Builder.com's CSS Guide
http://builder.cnet.com/Authoring/CSS/index.html

Those sites will give a complete overview of CSS and how to implement
it. But I'll just quickly re-iterate the parts of CSS that will be used
throughout this tutorial.

Using DIV Tags:

When using CSS-Positioning, these properties are usually applied to the
DIV (division) tag - an empty, non-formatting tag, that is best suited
for CSS. When you put HTML/text into a DIV tag it is commonly referred
to as one of: "DIV block", "DIV element", "CSS-layer", or as I say, just
a "layer". When you read about Dynamic HTML on websites or in
newsgroups, if someone is talking about any of these terms they're all
talking about the same thing - some piece of HTML that is inside a
positioned "DIV" tag.

To markup an empty DIV tag is no different than any other tag:

<DIV> This is a DIV tag </DIV>

Using DIV tag by itself has the same results as using <P></P>

But by applying CSS to DIV tags we can define where on the screen this
piece of HTML will be displayed, draw squares or lines, or how to
display the text that's inside it. You do this by first giving the DIV
an ID (sort of like a name):

<DIV ID="truck"> This is a truck </DIV>

What you use for your ID is up to you. It can be any set of characters
(a-z,A-Z,0-9, and underscore), but starting with letter.

Then you apply your CSS in one of 2 ways:

Inline CSS:

5

Inline is the way most commonly used. And it is the way I will begin
showing how to write DHTML and JavaScript.

<DIV ID="truck" STYLE="styles go here"> This is a truck </DIV>

External STYLE tag:

Using the external method will work as well, however there are a few
issues involved with writing CSS like this, so I suggest you wait until
you get to the Nesting Layers lesson before trying it on your own. For
right now just take a look to see how it is done...

<STYLE TYPE="text/css"> <!-- #truck {styles go here} --> </STYLE>

<DIV ID="truck"> This is a truck </DIV>

Notice how the ID is used in the STYLE tag to assign the CSS styles.

Cross-Browser CSS Properties:

Because the goal of this site is to produce DHTML that works in both
Netscape and Internet Explorer, we are somewhat limited to which CSS
styles/properties we can use. Generally, the following properties are
the ones that work (fairly closely) to the standards as defined by the
W3C.

position: Defines how the DIV tag will be positioned - "relative" means
that the DIV tag will flow like any other HTML tag, whereas "absolute"
means the DIV will be positioned at specific coordinates. Absolute
positioning will be the topic of most of this tutorial.
left: Left location (the number of pixels from the left edge of the browser
window).
top: Top location (the number of pixels from the top edge of the
browser window).
width: Width of the DIV tag. Any text/html that is
inserted into the DIV will wrap according to what this value is. If
width is not defined it will all be on one line.
Important: When using layers for animation you should always define the
width. This is because in IE the default is the entire width of the
screen. If you move the layer around the screen a scrollbar will appear
at the bottom, which is annoying and causes the animation to slow down.
height: Height of the DIV tag. This property is rarely needed unless you
also you want to clip the layer
clip: Defines the clipping (crop)
rectangle for the layer. Makes the DIV into a precisely defined square.
You define the size of the rectangle with the values of the four edges:
clip:rect(top,right,bottom,left);
visibility: Determines whether the DIV will be "visible", "hidden", or "inherit" (default).
z-index The stacking order of DIV tags.
background-color: Background color of the DIV. In Netscape this property only
applies to the background color of the text. When you want to draw squares with
CSS you must also define the layer-background-color property to the same value.
layer-background-color: Background color of the DIV for Netscape.

6

background-image: Background image for Internet Explorer. In Netscape
this property only applies to the background-image for the text.
layer-background-image: Background image of the DIV for Netscape.

The syntax for CSS differs from HTML, you use colons to separate the
property and it's value, and semi-colons to separate the different
properties:

position: absolute;
left: 50px;
top: 100px;
width: 200px;
height: 100px;
clip: rect(0px 200px 100px 0px);
visiblity: visible;
z-index: 1;
background-color:#FF0000;
layer-background-color:#FF0000;
background-image:URL(filename.gif);
layer-background-image:URL(filename.gif);

You have a bit of flexibility when assigning CSS properties. You do not
have to define all of them. White space is ingored so you can either
have them all on the same line, or on separate lines, tabs between
values etc. As well, the default unit value is pixels, so you do not
necessarily have to have the "px" after the left, top, width and height
values, although it is recommended to do so.

position:absolute; left:50px; top:100px; width:200px; height:100px;
clip:rect(0px 200px 100px 0px); background-color:#FF0000;
layer-background-color:#FF0000;

Inline Example:

<DIV ID="divname" STYLE="position: absolute; left:50px; top:100px;
width:200px; height:100px; clip:rect(0px 200px 100px 0px);
visiblity:visible; z-index:1;"> </DIV>

External Example:

<STYLE TYPE="text/css">
<!-- #divname {position: absolute; left:50px;
top:100px; width:200px; height:100px; clip:rect(0px 200px 100px 0px);
visiblity:visible; z-index:1;} -->
</STYLE>

<DIV ID="divname"> </DIV>

7

Cross-Browser JavaScript

You can use JavaScript to access and change the properties of your CSS-P
element. However, some of the syntax differs between Netscape 4.0 and
Internet Explorer 4.0. By knowing where the differences lie, I'll show
you an easy way to create cross-browser JavaScripts - scripts that will
work in both N4 and IE4.

Browser Checking:

I'm now using ns4 and ie4 for browser checking instead of n and ie

First things first: we have to know how to check which browser someone
is using. This little chunk of code will be the standard browser check
in nearly all the examples in this tutorial:

ns4 = (document.layers)? true:false
ie4 = (document.all)? true:false

The document.layers object is specific to Netscape 4.0, while the
document.all object is specific to IE 4.0. So by checking if the object
exists we can create the boolean variables ns4 (for Netscape 4.0) and
ie4 (for Internet Explorer 4.0) and assign them true or false depending
on which browser is being used. Now whenever you need to check which
browser someone is using you just have to use if (ns4) or if (ie4):

function check() {
 if (ns4) {
 // do something in Netscape Navigator 4.0
 }
 if (ie4) {
 // do something in Internet Explorer 4.0
 }
 }

Using JavaScript and CSS-P:

Say we had a DIV tag that looked like this:

<DIV ID="blockDiv" STYLE="position:absolute; left:50; top:100;
width:30;"> </DIV>

Remember that this is an example, you can rename blockDiv to whatever
you want and it will still work exactly the same.

For Netscape the general way to access the CSS-P properties is like
this:

document.blockDiv.propertyName

or

8

document.layers["blockDiv"].propertyName

And then for Internet Explorer it's:

blockDiv.style.propertyName

or

document.all["blockDiv"].style.propertyName

Where propertyName can be any one of left, top, visibility, zIndex,
width, or any of the other CSS-P properties.

The Cross-Browser Method (Pointer Variables):

I've found that the best way to make cross-browser scripts is to have a
variable, that depending on whether you're in Netscape or IE, points
directly to either document.blockDiv or blockDiv.style, look below. I
call these variables, pointer variables.

if (ns4) block = document.blockDiv
if (ie4) block = blockDiv.style

You see, after you do this, you can now access the properties using a
shortcut way. For example if you wanted to check the left coordinate of
our DIV tag called "blockDiv", it would simply be:

block.left

It doesn't matter which browser is used because for Netscape, block
points to document.blockDiv, and in IE, block points to blockDiv.style.

Aside: Throughout this tutorial I will be naming my DIV tags with a
"Div" on the end of them (squareDiv, blockDiv etc.). This is because
when you initialize a layer using the pointer variable method, you have
to choose a variable name that is totally unique - it cannot be the same
name as one of your DIV tags. I just make it a standard in my code that
all layers that are going to be initialized with pointer variables
automatically have a "Div" and I make the pointer variable name without
the "Div" - because as you'll see you end up using the pointer variable
many more times than the name of the layer itself.

A Full Example:

This example will pop up an alert of the left, top and visiibilty
properties of a CSS-P element.

The script:

<SCRIPT LANGUAGE="JavaScript">
<!-- ns4 = (document.layers)? true:false
ie4 = (document.all)? true:false

function init() {

9

if (ns4) block = document.blockDiv
if (ie4) block = blockDiv.style

}

//-->
</SCRIPT>

The HTML:

<BODY onLoad="init()">

left -
top -
visibility

<DIV ID="blockDiv" STYLE="position:absolute; left:50px; top:100px;
width:30px; height:30px; clip:rect(0px 30px 30px 0px);
background-color:red; layer-background-color:red;"> </DIV>

</BODY>

Important: I call the init() function in the BODY onLoad="" so that it
will execute after the rest of the page is completed loading. This is
because when defining your pointer variable, the DIV tag must already
exist. If you try and define the variable before the page is done
loading you'll recieve a JavaScript error like "block is not defined".

The Differences

If you open up both Netscape and IE and try that last example in each,
you'll notice that you don't recieve the same values.

Property Netscape 4 Value IE 4 Value
left 50 50px
top 100 100px
visibility show visible

These differences can cause some problems but in the next few sections
I'll show how to get around them.

10

Showing and Hiding

You might ask yourself: "Why does Netscape display the visibility as
'show'?"

Well the answer is that Netscape's CSS properties are based around it's
proprietory LAYER tag. However, even Netscape is now downplaying it's
LAYER tag in favour of the W3C's recommended CSS-P. So the "show" and
corresponding "hide" values of the visibility property are left-overs
from Netscape's layers. I believe this is the only glaring defect in how
Netscape represents CSS-P.

Until there is a unified standard you'll usually have to write separate
code to hide a particular element.

For Netscape

To show an element in Netscape you have to use:

document.divName.visibility = "show"

and to hide it's:

document.divName.visibility = "hide"

For Internet Explorer

To show an element in Internet Explorer you have to use:

divName.style.visibility = "visible"

and to hide it's:

divName.style.visibility = "hidden"

Generic Show and Hide Functions

Instead of always rewriting the same code over and over again to show
and hide elements, you can use the following functions:

function showObject(obj) {
if (ns4) obj.visibility = "show"
else if (ie4) obj.visibility = "visible"

}

function hideObject(obj) {
if (ns4) obj.visibility = "hide"
else if (ie4) obj.visibility = "hidden"

}

These functions must be used along with pointer variables - see the code
in the following example.

11

Whenever you want to change the visibility of an element, you just go:

showObject(objectName)

or

hideObject(objectName)

Where objectName is your pointer variable to a particular DIV tag.

Show/Hide Functions Without Pointer Variables

I've been finding that it's not always necessary, and sometimes
cumbersome if you have a lot of layers that need only to be hidden and
shown. I've showed the pointer variable technique first because that is
general idea that I'll be building on to make more powerful JavaScripts
in further lessons. But on occasions where you won't need to have any
more functionality, the following simplified functions can also be used:

// Show/Hide functions for non-pointer layer/objects

function show(id) {
if (ns4) document.layers[id].visibility = "show"
else if (ie4) document.all[id].style.visibility = "visible"

}

function hide(id) {
if (ns4) document.layers[id].visibility = "hide"
else if (ie4) document.all[id].style.visibility = "hidden"

}

To use these are similar except now the exact name of the layer must be
used and it also must be in quotes:

show("divID")

or

hide("divID")

Where divID is the ID of the DIV tag that you want to show/hide.

12

Moving

There is generally no compatibility problems when assigning a new
location for your CSS-P element.

To move an element named "myelement" to the coordinate (100,50), you
simply assign new left and top values:

myelement.left = 100 myelement.top = 50

But don't forget that myelement must be a pointer variable defined
something like this:

function init() {
if (ns4) myelement = document.myelementDiv
if (ie4) myelement = myelementDiv.style

}

From now on, this will be inherent in all examples so don't forget!

As I said, there is no compatibility issues with assigning a new
location, however there is a problem when capturing the current location
of an element. It's due to fact that IE stores it's locations with a
"px" at the end of the values (as seen in the Cross-Browser Javascript
example).

To get rid of the "px" you can parse the value into an integer.

So instead of just writing

myelement.left

You have to write

parseInt(myelement.left)

For example, if you wanted to pop up an alert of the current left and
top location you'd write:

alert(parseInt(myelement.left) + ", " + parseInt(myelement.top))

Adding New Properties

Now believe me, to always have to write parseInt() before all your
variables will tend to get very annoying. You will soon ask yourself if
there is a better way... and I think I have a pretty good answer to
that.

There is nothing stopping you from adding more properties onto our
pointer variable, or object, as I will tend to call it from now on.

What I suggest you do, is keep the current location of the element in
separate properties aside from the left and top properties. To make

13

these new properties you just directly assign them. I'd start by setting
them to actual location:

myelement.xpos = parseInt(myelement.left)
myelement.ypos = parseInt(myelement.top)

Now after this point, if you ever need to find out the left or top
position, you just check the value of myelement.xpos and myelement.ypos
respectively. Our new alert() would look like so:

alert(myelement.xpos + "," + myelement.ypos)

And The Catch?

When you want to change the location of the element, you FIRST have to
change the values of xpos and ypos. THEN you set the left and top values
equal to xpos and ypos respectively. For example:

function move() {
myelement.xpos = 200
myelement.ypos = -40
myelement.left = myelement.xpos
myelement.top = myelement.ypos

}

You must always keep the xpos and ypos values in synch with the left and
top values. That way when you check myelement.xpos, you know that it
will always be the same as myelement.left.

Not too difficult right? This idea will be the basis for everything I'll
show in future examples. It may seem a little dumb to have these extra
variables but once you get into more complicated things you'll find this
technique does help smooth out your code.

Aside: You may be wondering why am using xpos and ypos as my properties
instead of just x and y... Well I did that for a reason. It is a little
known fact that Netscape has already included these properties into
CSS-P. I found that if you use x and y then your values will always be
stored as integers. Now you may think "who cares?"... but there are
instances where you need to store the current left and top positions
with more than just integers (ie. real numbers with decimals and
everything) and this is just not possible if you use x and y.

Generic Move Functions

In that last example I "hard-coded" the movements - I wrote separate
functions for each movement. Now of course if you want to move many
different layers to various locations you don't always want to keep
writing more functions. So what we can do is create some generic
functions that will take care of most types of movements.

The moveTo() Function

The moveTo() function takes your layer/object and moves it directly to a

14

new location.

function moveTo(obj,x,y) {
obj.xpos = x
obj.left = obj.xpos
obj.ypos = y
obj.top = obj.ypos

}

To use the function is really easy - all you do is tell it what
layer/object to use and the new x and y locations. For example, if you
initialize your layer with:

if (ns4) mysquare = document.mysquareDiv
if (ie4) mysquare = mysquareDiv.style
mysquare.xpos = parseInt(mysquare.left)
mysquare.ypos = parseInt(mysquare.top)

Then to move the square to a new location you'd write:

moveTo(mysquare,50,100)

The moveBy() Function

MoveBy works exactly the same but instead of moving it directly to a new
location it shifts the layer by a given number of pixels.

function moveBy(obj,x,y) {
 obj.xpos += x

obj.left = obj.xpos
obj.ypos +=y
obj.top = obj.ypos

}

To shift mysquare 5 pixels right, and 10 pixels up you'd write:

moveBy(mysquare,5,-10)

15

Sliding

Sliding is just what I call a animated movement or scrolling effect. By
using looping (or iterating) functions and moving the layer in small
increments, you can put together any sort of animated movement you can
think of.

The basic idea is that you have your movement code:

block.xpos += 5 block.left = block.xpos

Which moves the layer 5 pixels to the right. Then you stick that code
into a looping function:

function slide() {
if (block.xpos < 300) {

block.xpos += 5
block.left = block.xpos
setTimeout("slide()",30)

}
}

The if statement is there to determine when to stop the animation. In
this case the function will stop when the x-position is at or over 300
pixels. The setTimeout() is what creates the loop. After a certain
amount of milliseconds, it will execute whatever's inside the quotes. So
this function will repeat itself every 30 milliseconds.

Of course it's not much more difficult to move on a diagonal - you just
change both the xpos (left) and the ypos (top) values.

Moving at a Given Angle

Using some high school trigonometry we can figure out how to move an
element on any angle. In case you forgot, here's a quick diagram to
refresh your memory:

Now to initialize your object to include angles you'll need 4 new properties:

 object.angle = 30
 object.xinc = 5*Math.cos(object.angle*Math.PI/180)
 object.yinc = 5*Math.sin(object.angle*Math.PI/180)
 object.count = 0

We calculate the x and y incrementation and use them to determine how far to move
the left and top values. You have to multiply the angle by Math.PI/180 to convert the
angle into radians - sin and cos are always calculated in radians. The count property
will be used in the iterating function to determine how many times to loop.

16

Using my block example again, here's some full code to move an element at a given
angle.

function init() {
 if (ns4) block = document.blockDiv
 if (ie4) block = blockDiv.style
 block.xpos = parseInt(block.left)
 block.ypos = parseInt(block.top)
 block.angle = 30
 block.xinc = 5*Math.cos(block.angle*Math.PI/180)
 block.yinc = 5*Math.sin(block.angle*Math.PI/180)
 block.count = 0
 }

 function slide() {
 if (block.count < 25) {
 block.xpos += block.xinc
 block.ypos -= block.yinc
 block.left = block.xpos
 block.top = block.ypos
 block.count += 1
 setTimeout("slide()",30)
 }
 else block.count = 0
 }

The if (block.count < 25) means that the function will execute 25 times before
stopping - ie4. the block will slide a total 125 pixels units.

17

Mouse Click Animation

Using clever mouse events we can use a single hyperlink to start and
stop an animation. When pressed the hyperlink will slide a block and
when released the slide will stop.

The slide script is nothing new. We'll need an active variable in there
again, and the move function is a carbon copy of previous functions:

 function init() {
 if (ns4) block = document.blockDiv
 if (ie4) block = blockDiv.style
 block.xpos = parseInt(block.left)
 block.active = false
 }

 function slide() {
 if (block.active) {
 block.xpos += 5
 block.left = block.xpos
 setTimeout("slide()",30)
 }
 }

The trick is with what I do with the hyperlink:

<A HREF="javascript:void(null)" onMouseDown="block.active=true; slide();
return false;" onMouseUp="block.active=false"
onMouseOut="block.active=false">move

The onMouseDown sets the active variable to true, and then calls the
slide() function which begins our animation. While the link is held,
nothing changes. It continues to slide until you release the hyperlink -
and hence execute whatever is in the onMouseUp handler. It sets the
active variable to false which stops the slide.

The onMouseOut also sets the active variable to false for error proofing
reasons. I found that if you move the mouse off the link and then
release, it wouldn't stop the animation - because you're not executing
an MouseUp over the link. But if you include the onMouseOut it accounts
for this loop-hole.

18

Keystroke Events

Capturing keystrokes is the most powerful type of interaction you have
at your disposal. You can have total control over (almost) any key that
has been pressed or released. Note however, Netscape did not include the
ability to capture Keystroke events into the Unix versions of
Communicator 4.0. If you're planning on using keystrokes in a JavaScript
game it will not be playable on any version of Unix including Linux.

The first thing that you have to understand is how to initialize your
events. Here is a basic initialization for the "onkeydown" event.

document.onkeydown = keyDown

When this code is read by the browser it will know that whenever a key
is pressed, the keyDown() function will be called. It doesn't matter
what function you call, and the code does not need the brakets after the
funtion name.

To capture what key was pressed works a little bit differently between
the browsers. So I'll first show each individually.

Netscape

Netscape is a little more picky than IE is with respect to event
handling. You have to put an extra line in to tell Netscape to always
check for the keydown event. If you don't have this line, it will mess
up when other events like mousedown occur.

document.onkeydown = keyDown if (ns4)
document.captureEvents(Event.KEYDOWN)

Your keyDown() has to pass a hidden variable - I'll use the letter "e"
because that is what's commonly used.

function keyDown(e)

This "e" represents the key that was just pressed. To find out out what
key that is, you can use the which property:

e.which

This will give the index code for the key - not what letter or number
was pressed. To convert the index to the letter or number value, you
use:

String.fromCharCode(e.which)

So putting it all together, we can make a function that pops up a
message telling the keycode and the real key values of the key that was
pressed:

function keyDown(e) {

19

 var keycode = e.which
 var realkey = String.fromCharCode(e.which)
 alert("keycode: " + keycode + "\nrealkey: " + realkey)
 }

 document.onkeydown = keyDown
 document.captureEvents(Event.KEYDOWN)

Internet Explorer

IE works similarly except you don't need to pass the "e" value.

Instead of using e.which, you use window.event.keyCode.

And conversion to the real key value is the same:
String.fromCharCode(event.keyCode).

function keyDown() {
 var keycode = event.keyCode
 var realkey = String.fromCharCode(event.keyCode)
 alert("keycode: " + keycode + "\nrealkey: " + realkey)
 }

 document.onkeydown = keyDown

 document.onkeydown = keyDown

Combining the Two

Now, if you were to open both browsers and compare the examples, you'll
realize the results are not always the same. The keycodes are different
because each browser uses a different character set. Because of this
you'll always have to make separate code for each browser - there's no
way around it.

What I'd suggest is totally forgetting about the real key values
entirely, and only work with the keycodes. The following chunk of code
will assign nKey to the keycode and ieKey to 0 if you're using Netscape
or or it will set ieKey to the keycode and nKey to 0 if you're using
Internet Explorer. Then it shows an alert of both values:

function keyDown(e) {
 if (ns4) {var nKey=e.which; var ieKey=0}
 if (ie4) {var ieKey=event.keyCode; var nKey=0}
 alert("nKey:"+nKey+" ieKey:" + ieKey)
 }

 document.onkeydown = keyDown
 if (ns4) document.captureEvents(Event.KEYDOWN)

Now on to the good stuff....

Moving Elements with the Keyboard

20

Now you can activate your movement functions from the keyboard. You do a
check of which key was pressed, and then call the appropriate function
to move your object. For the following example I use the "A" key to
initiate a sliding function. For the "A" key, the nKey value is 97, and
the ieKey is 65. So I do a check for those values in order to call the
"slide" function.

function init() {
 if (ns4) block = document.blockDiv
 if (ie4) block = blockDiv.style
 block.xpos = parseInt(block.left)

 document.onkeydown = keyDown
 if (ns4) document.captureEvents(Event.KEYDOWN)
 }

 function keyDown(e) {
 if (ns4) {var nKey=e.which; var ieKey=0}
 if (ie4) {var ieKey=event.keyCode; var nKey=0}
 if (nKey==97 || ieKey==65) { // if "A" key is pressed
 slide()
 }
 }

 function slide() {
 block.xpos += 5
 block.left = block.xpos
 status = block.xpos // not needed, just for show
 setTimeout("slide()",30)
 }

Understanding "Active" Variables

That last script is somewhat limited. After the movement is started,
there's no way to stop it, and if you hit the key several times it moves
faster and faster. So we'll have fix that up.

I've developed a technique of using what I call "active" variables to
represent the current state of movement... is it moving? or is it not
moving? Once you get used to working with them, they can be very handy.
Because most movement functions are recursive, they have no built in way
of stopping, and that's where the active variables come into play. By
inserting the appropriate "if" statment into the slide function, you can
have control of whether that function will repeat or not. Usually you
make the function something like this:

function slide() {
 if (myobj.active) {
 myobj.xpos += 5
 myojb.left = myobj.xpos
 setTimeout("slide()",30)
 }
 }

21

In this case, the slide() function will only operate when the
myobj.active value is true. Once you set myobj.active to false the
movement function will stop. Knowing this, we can insert some code into
our script that will give us more control of what's happening.

Using onKeyUp and "Active" Variables

The onkeyup event works exactly the same way the onkeydown did. You can
initialize both keydown and keyup with the following:

document.onkeydown = keyDown
document.onkeyup = keyUp
if (ns4) document.captureEvents(Event.KEYDOWN | Event.KEYUP)

And the keyUp() function is the same too. But we want to make so that
when a key is released, it will stop whatever movement is currently
running. To do that we can set our block's active variable to 0:

function keyUp(e) {
 if (ns4) var nKey = e.which
 if (ie4) var ieKey = window.event.keyCode
 if (nKey==97 || ieKey==65) block.active = false
 }

But to totally "error" proof our code, we have to put some more checks
into the other functions. Take a look at the code below and see if you
can understand what I'm doing. In the keyDown function, the &&
!block.active is to make sure that we can only call the function if the
block is not active. In other words, if the block is moving we do not
execute the slide() function again. Then we set the active value to true
and move the block. The slide() function has the if (block.active)
statement so that it only moves when the block.active value is true -
that way when we release a key it will stop executing.

function init() {
 if (ns4) block = document.blockDiv
 if (ie4) block = blockDiv.style
 block.xpos = parseInt(block.left)
 block.active = false

 document.onkeydown = keyDown
 document.onkeyup = keyUp
 if (ns4) document.captureEvents(Event.KEYDOWN | Event.KEYUP)
 }

 function keyDown(e) {
 if (ns4) {var nKey=e.which; var ieKey=0}
 if (ie4) {var ieKey=event.keyCode; var nKey=0}
 if ((nKey==97 || ieKey==65) && !block.active) { // if "A" key is pressed
 block.active = true
 slide()
 }

22

 }
 function keyUp(e) {
 if (ns4) {var nKey=e.which; var ieKey=0}
 if (ie4) {var ieKey=event.keyCode; var nKey=0}
 if (nKey==97 || ieKey==65) {
 block.active = false // if "A" key is released
 }
 }

 function slide() {
 if (block.active) {
 block.xpos += 5
 block.left = block.xpos
 status = block.xpos // not needed, just for show
 setTimeout("slide()",30)
 }
 }

What Keys can I use?

As I mentioned earlier, the character sets for Netscape and Internet
Explorer differ. In general, all letters, numbers, symbols, Space, and
Enter will work fine. For a quick way to find out the nKey and ieKey
values of particular keys you can view my nKey and ieKey Finder.

23

Clipping Layers

Clipping refers to what part of the layer will be visible. You have
understand the difference between the clip values, and the width and
height - they are not the same. Width and Height really just tell the
browser how to wrap the HTML elements inside it. Whereas clipping makes
a window to view the layer through - it has no effect on any of the
other properties of the layer (left or top location, width, height,
visibility, etc.).

The clipping region is defined as a square by setting the clip value for
each of the 4 edges (top, right, bottom, left). For each edge you can
clip a portion of the viewing space away, or to add extra viewing space.
All the clip values are with respect to that layer - the values are
taken from the top-left location of the layer.

The CSS syntax for clipping is:

clip:rect(top,right,bottom,left)

Where the top, right, bottom, and left values are in pixels. And don't
forget the order that they go in - it will be confusing if you mess them
up.

Here's a DIV tag using clipping to define the viewable area:

<DIV ID="blockDiv" STYLE="position:absolute; left:50; top:80; width:100;
height:50; clip:rect(-10,110,60,-10); background-color:#FF0000;
layer-background-color:#FF0000;"> </DIV>

In this case it creates an extra 10 pixel border around the edge of the
layer because clip top is -10 and clip left is -10. The clip right is
110 which is 10 more than our width, and the clip bottom is 60 which is
10 more than the height.

I put a few extra CSS properties in there too. The background-color (for
ie4) and layer-background-color (for Netscape) are used to do just that
- color the entire layer in whatever color you wish. This enables us to
see our layer as a square and will help to visualize what's going on
when we clip it. Usually you don't have to have the height of the layer,

24

but when you're using clipping you should put it in because if you don't
IE won't color the extra space below the last element in the layer.

You can also have a background image in your layer. The CSS for IE is
background-image:URL(filename.gif) and for Netscape it's
layer-background-image:URL(fildname.gif). But in order for Netscape to
display it properly you must have one more CSS property repeat:no.
Here's the full CSS for a layer with a background images:

<DIV ID="blockDiv" STYLE="position:absolute; left:50; top:80; width:100;
height:50; clip:rect(-10,110,60,-10);
background-image:URL(filename.gif);
layer-background-image:URL(filename.gif); repeat:no;}

JavaScript and Clipping

Once you've clipped the layer can then obtain or change those clip
values using JavaScript just like we can the location.

Clipping in Netscape:

In Netscape, you can obtain or change any of the clip values
individually:

document.divName.clip.top
document.divName.clip.right
document.divName.clip.bottom
document.divName.clip.left

To show an alert of the top clip value you'd write:

alert(document.divName.clip.top)

Then to change the top clip value to 50 pixels you'd write:

document.divName.clip.top = 50

Clipping in Internet Explorer:

In IE you have to obtain all the clip values at the same time. For
example you could pop up an alert showing the clip value:

alert(divName.style.clip)

That will return a string which represents what the clip values were
defined as. Here's an example of what would be returned:

"rect(0px 50px 100px 0px)"

When you want the change the clip values you cannot just clip one of the
edges like you can in Netscape - you must reset all your clip values at
the same time:

divName.style.clip = "rect(0px 100px 50px 0px)"

25

This makes it a little awkward to clip in ie4. I've come up with a
generic function that you can use to check the clip value for both
browsers:

The clipValues() Function

The clipValues() function can be used to obtain the clip values for each
edge of a layer.

function clipValues(obj,which) {
 if (ns4) {
 if (which=="t") return obj.clip.top
 if (which=="r") return obj.clip.right
 if (which=="b") return obj.clip.bottom
 if (which=="l") return obj.clip.left
 }
 else if (ie4) {
 var clipv = obj.clip.split("rect(")[1].split(")")[0].split("px")
 if (which=="t") return Number(clipv[0])
 if (which=="r") return Number(clipv[1])
 if (which=="b") return Number(clipv[2])
 if (which=="l") return Number(clipv[3])
 }
 }

What you do is tell it what layer (defined as a pointer variable) and
what edge you want to find the clip value for. For example, once we've
defined a pointer variable for a "blockDiv" layer, we show an alert of
the top clip value by writting:

alert(clipValues(block,"t"))

The edge that you want to check only has to be the first letter in
quotes - "t" (top), "r" (right), "b" (bottom), "l" (left).

Changing the Clip Values

To change the clip values I've written 2 generic functions that can be
used pretty easily.

The clipTo() Function:

clipTo() allows you to re-clip the layer to specific values.

function clipTo(obj,t,r,b,l) {
 if (ns4) {
 obj.clip.top = t
 obj.clip.right = r
 obj.clip.bottom = b
 obj.clip.left = l
 }
 else if (ie4) obj.clip = "rect("+t+"px "+r+"px "+b+"px "+l+"px)"

26

 }

To use it you must tell it what layer/object to use, and the clip value
for each edge - top, right, bottom, left respectively.

clipTo(block,0,100,100,0)

The clipBy() Function:

clipBy() allows you to shift the clip value by a given amount of pixels
- it adds or subtracts from the current clip value for the edges:

function clipBy(obj,t,r,b,l) {
 if (ns4) {
 obj.clip.top = clipValues(obj,'t') + t
 obj.clip.right = clipValues(obj,'r') + r
 obj.clip.bottom = clipValues(obj,'b') + b
 obj.clip.left = clipValues(obj,'l') + l
 }
 else if (ie4) obj.clip = "rect("+(this.clipValues(obj,'t')+t)+"px
"+(this.clipValues(obj,'r')+r)+"px "+Number(this.clipValues(obj,'b')+b)+"px
"+Number(this.clipValues(obj,'l')+l)+"px)"
 }

Similar to the clipTo() function you just set how much you want to clip
each edge by:

clipBy(block,0,10,5,0)

This will add 10 pixels to the right and 5 pixels to the bottom.

Netscape will always show the layer's color no matter where it's been clipped. But in
IE when you clip outside of the layer's boundaries (adding extra borders) you can't
see the edges of the layer.

Animated Clipping (Wiping)

By putting clipBy() commands into looping functions you can create all
those neat wiping effects that I'm sure you've seen before. I'll tell
you right now it's probably easiest if you make your own wipe()
functions. It is possible to make a generic wipe function but I've
included that into the Dynamic Layer Object as an add-on method (read
the Wipe Method lesson for more info). The truth is though it's probably
easier and much less code if you just write your own little function to
wipe your layers. You do it in the same manner as you do slides with.
Create a looping function that re-clips the layer:

function wipe1() {
 clipBy(block,0,5,0,0)
 setTimeout("wipe1()",30)
 }

But we have to have a way of stopping the wipe so just do a check to see
if the edge has reached the desired value:

27

function wipe1() {
 if (clipValues(block,'r')<200) {
 clipBy(block,0,5,0,0)
 setTimeout("wipe1()",30)
 }
 }

28

Nesting Layers

I chose to leave the topic of nesting layers until now because they will
effect your scripts in a number of places.

Nesting refers to when you want to group several layers together into
one uniform element. In other words, nested layers are "layers within
layers".

When you do this the child layers will be positioned with respect to
their parent layer. Also, if the parent layer is clipped the child
layers will appear as if in a window or like a plugin. If the child
layers go outside the boundaries (the clip edges) of the parent layer
they will become invisible - their visibility property will not change
but they will appear as if they are offscreen:

I've found nesting comes in handy when you get into more complicated
positioning. Since all the locations of the child layers are with
respect to the parent layer, they are permanently "locked" into
position. If you later want to move the location of the parent layer,
you don't have to change the locations of the child layers because they
will move accordingly. This is also true in sliding animations - all the
child layers will slide in unison.

The JavaScript for nested layers differs quite dramatically between
Netscape and Internet Explorer. I'll admit it is a bit of pain to make
scripts with nested layers to work properly in both browsers - and that
is the reason you don't see nesting used that often on the web. However
I've developed some really great techniques to get around these problems
so bear with me here as I assure you that nesting is so useful that once
you start using it, you'll want to do just about everything that way.

Stylesheets and Nesting:

To nest layers all you do is wrap the parent DIV around all the child
DIV's:

<DIV ID="parent1Div">

<DIV ID="child1Div"></DIV>

<DIV ID="child2Div"></DIV>

29

</DIV>

I have noticeably left out the styles for these DIV tags. This is because
Netscape does not let you nest layers if the styles have been defined
using the "inline" method like I have been using for this tutorial up
until now. Netscape seems to only allow one set of nested layers, if you
use any more then it will totally ignore all the styles for all the
layers after it. So right off the bat we're going to ALWAYS define the
styles using the STYLE tag. All the examples from this point forward
will be done this way.

The CSS is basically the same except it's separated from the DIV tags:

<STYLE TYPE="text/css">
 <!--
 #parent1Div {position:absolute; left:100; top:80; width:230; height:120;
clip:rect(0,230,120,0); background-color:#C0C0C0; layer-background-
color:#C0C0C0;}
 #child1Div {position:absolute; left:-20; top:40; width:70; height:70;
clip:rect(0,70,70,0); background-color:#FF0000; layer-background-color:#FF0000;}
 #child2Div {position:absolute; left:180; top:70; width:70; height:70;
clip:rect(0,70,70,0); background-color:#0000FF; layer-background-color:#0000FF;}
 -->
 </STYLE>

 <DIV ID="parent1Div">

 <DIV ID="child1Div"></DIV>

 <DIV ID="child2Div"></DIV>

 </DIV>

I also included the clip regions to define the squares. In most cases
where you use nesting you usually have to define the clip values and
color the layers.

JavaScript and Nesting:

Nesting is where the JavaScript for Netscape and Internet Explorer go in
completely opposite directions. In IE, there's no difference whether a
layer is nested or not, you access the properties of the layer in the
same manner as before:

childLayer.style.properyName

However in Netscape when you want to access the properties of a nested
layer (a child layer) you have to reference it with respect to it's
parent layer:

document.parentLayer.document.childLayer.propertyName

The extra "document" before the layer names are due to the fact Netscape

30

treates layers as separate documents - a child layer is part of the
document of it's parent layer.

It is possible to nest layers an unlimited number of times as well - you
just keep wrapping the DIV's over and over again. Say we changed that
example set so that child2Div is inside child1Div

<DIV ID="parent1Div">

 <DIV ID="child1Div">

 <DIV ID="child2Div"></DIV>

 </DIV>

</DIV>

In that case to access the properties of child2Div you'd have to write:

document.parent1Div.document.child1Div.document.child2Div.propertyName

This concept will have to be incorporated into our pointer variables.
Here's the way I'd define the pointer variables for that original
example set:

function init() {
 if (ns4) {
 parent1 = document.parent1Div
 child1 = document.parent1Div.document.child1Div
 child2 = document.parent1Div.document.child2Div
 }
 if (ie4) {
 parent1 = parent1Div.style
 child1 = child1Div.style
 child2 = child2Div.style
 }
 }

Now onto some more problems...

CSS Properties Revisited:

Unfortunately Internet Explorer has a little technicality that poses
quite a dilemma that had me baffled for quite a while. When you define
the styles for your layers using the STYLE tag, IE does not let you read
any the properties initially. So in IE if you were to check the current
location of parent1 using:

alert(parent1.left)

You will find that you don't receive any value. This is true for all the
CSS properties (left, top, width, height, visibility etc.).

I am still unclear why Microsoft made IE this way. It only occurs when

31

you use the STYLE tag, and only effects the initial values of
properties. Once you start changing the properties in JavaScript you can
then access them without problems.

How does this affect our situation? Well, if we want to assign other
properties as we did earlier (xpos and ypos) we need a way to find the
current location of the layer in some different way for IE4. It's
fortunate that Microsoft included some extra non-standard CSS properties
into IE4:

offsetX
offsetY
offsetWidth
offsetHeight

These extra properties are not effected by the IE4 STYLE tag problem so
we can use those to obtain the current location of the layer. So here's
our new code to add our xpos and ypos properties onto our pointer
variables:

function init() {
 if (ns4) {
 parent1 = document.parent1Div
 parent1.xpos = parent1.left
 parent1.ypos = parent1.top
 child1 = document.parent1Div.document.child1Div
 child1.xpos = child1.left
 child1.ypos = child1.top
 child2 = document.parent1Div.document.child2Div
 child2.xpos = child2.left
 child2.ypos = child2.top
 }
 if (ie4) {
 parent1 = parent1Div.style
 parent1.xpos = parent1.offsetX
 parent1.ypos = parent1.offsetY
 child1 = child1Div.style
 child1.xpos = child1.offsetX
 child1.ypos = child1.offsetY
 child2 = child2Div.style
 child2.xpos = child2.offsetX
 child2.ypos = child2.offsetY
 }
 }

Once you've done that you can change the locations of the layers as
before.

Visibility and Nesting:

Again, if you use the STYLE tag to define your layers you will not be
able to obtain the original visibility value in IE4. But in my
experience, obtaining the visibility is very rarely necessary. Usually
you already know if a layer is visible or not. And remember that only

32

effects the initial visibility - after you change the visibility in
JavaScript you will then be able to find the value.

Showing and hiding nested layers works pretty much the way you'd expect.
Once you've defined the pointer variables you can use the same show/hide
functions that I explained in the Showing and Hiding lesson.

But there is one thing that I should point out. If you don't define the
visibility for the child layers, their visibility is "inherited" - it
takes on the value of the parent layer's visibility. In that case when
if you then hide or show the parent layer, all the child layers do the
same. BUT... in Netscape if you either define the visibility for the
child layers, or you start changing the visibility in JavaScript you
lose the ability to hide or show all the child layers at once. In that
case when you hide the parent layer, any child layer that is visible
will still show through.

To avoid this situation, you have to set the visibility back to
"inherit" instead of "visible" ("show" for Netscape). So instead of
using the showObj() function, you have to manually set the visibility
property:

mychild.visibility = "inherit"

Putting it back to inherit means if the parent is shown, the child layer
will also be shown, and if the parent is hidden, it will also be hidden.

33

Changing Images

To create truly dynamic animations and demos you will eventually have to
master the art of changing images on command.

For this lesson, I will dynamically change "imageA" into "imageB":

imageA.gif imageB.gif

You must make sure that both images are exactly the same dimensions,
otherwize when you change them, the new image will stretch itself to fit
in the same area. In situations where you want to change images that are
of different sizes you will not be able to use this type of code - you
will have to resort to simply hiding and showing separate layers.

To start off, you have to initially show one of the images - so I
decided to have a DIV tag named "imgDiv" with "imageA" inside it:

<DIV ID="imgDiv">
<IMG NAME="myImg" SRC="imageA.gif" WIDTH=75 HEIGHT=75
BORDER=0>
</DIV>

Notice that I assigned a NAME to the image (myImg), this name will be
used when changing the image. The name must be totally unique, ie4.
don't name the image the same as the DIV that it's inside otherwise it
won't work. Usually what I do is append "Img" to the end of it as I
append "Div" to the ID of a layer so that no naming conflicts occur.

Preloading Images

Before you can change the image, you have to preload the image into the
browsers cache. This is the basic code to preload an image:

imagename = new Image();
imagename.src = "imagefilename.gif";

What this does is create an image object. Nothing to it really, just now
we have an object by which we can access the image at any time. Whenever
we need to switch an image it will already be available - you won't have
to wait for the image to download because it will be cached. Since we'll
be needing both imageA and imageB in the cache I have to have code to
preload both of them:

imageA = new Image();
imageA.src = "imageA.gif";
imageB = new Image();
imageB.src = "imageB.gif";

34

The preload() Function

The more images you have to preload, the more you'll dislike having to
rewrite the two lines each time. So instead of writing two lines, let's
cut that down to one by using a generic preload() function:

 function preload(imgObj,imgSrc) {
 if (document.images) {
 eval(imgObj+' = new Image()')
 eval(imgObj+'.src = "'+imgSrc+'"')
 }
 }

where:

imgObj - the name of the object associated with the image
imgSrc - the source filename (url) of the image

Examples:

preload('imageA','imageA.gif')
preload('imageB','imageB.gif')

It's best to preload your images while the page is loading rather than
waiting until after the page loads, so I'd recommend always calling the
preload function immediately after defining it.

Changing the Image

Once you've preloaded the images you can the access and change any image
on the page. Changing images that are inside layers works a little
differently between Netscape and IE so first I'll show the explicit code
for changing each, then I will show a generic function that you can use
in any situation.

If the image is not in a layer, the general way to change an image is
this:

document.images["imageName"].src = imageObject.src

Where imageName is the name you supplied in the IMG tag, and imageObject
is the name of the preloaded image object.

So in my case I could use:

document.images["myImg"].src = imageB.src

But remember, that is if the image is not in a layer, as soon as it's in
a layer things change.

In Netscape, you have to reference what DIV tag it is in. In my case
it's in the imgDiv layer so you have to append document.imgDiv.document
in front of the code:

35

if (ns4) document.imgDiv.document.images["myImg"].src = imageB.src

The extra "document" between the name of the DIV and the images is
necessary because Netscape treats DIV's as a totally separate document.

But in Internet Explorer you don't have to do this, you just access it
as if it weren't in a layer at all:

if (ie4) document.images["myImg"].src = imageB.src

And there you have it. All you gotta do now is put that code into a
separate function and call that function when you want to change it:

function changeToA() {
 if (ns4) document.imgDiv.document.images["myImg"].src = imageA.src
 if (ie4) document.images["myImg"].src = imageA.src
 }

 function changeToB() {
 if (ns4) document.imgDiv.document.images["myImg"].src = imageB.src
 if (ie4) document.images["myImg"].src = imageB.src
 }

The changeImage() Function

The changeImage() function eliminates the need to have separate
functions for each time you want to change an image. You just send it
the layer it is in, the name of the image, and the name of the preloaded
image object - layer, imgName and imgObj respectively:

function changeImage(layer,imgName,imgObj) {
 if (document.layers && layer!=null)
eval('document.'+layer+'.document.images["'+imgName+'"].src = '+imgObj+'.src');
 else document.images[imgName].src = eval(imgObj+".src");
 }

In my situation, I can replace the changeToA() function with simply:

changeImage('imgDiv','myImg','imageA')

And the same for imageB:

changeImage('imgDiv','myImg','imageB')

View images2.html for an example using the changeImage() function.

Notes:

The changeImage() function can also be used for nested layers, for the
layer argument you can insert parentLayer.document.childLayer similarly
to how the Dynamic Layer object handles nested layers.

You can use this function for images thar aren't even in layers, just

36

pass null for the layer argument:

changeImage(null,'myImg','imageB')

Also, the changeImage() function is backward compatible. If you have a
layers page and view it in Netscape 3, the function will still work
properly. You can try it out by viewing any of these examples with that
browser. No other browser is capable of changing images, so if you
wanted to error check for the ability to change images you can use this
alteration of the changeImage() function:

function changeImage(layer,imgName,imgObj) {
 if (document.images) {
 if (document.layers && layer!=null)
eval('document.'+layer+'.document.images["'+imgName+'"].src = '+imgObj+'.src')
 else document.images[imgName].src = eval(imgObj+".src")
 }
 }

Both the changeImage() and preload() functions are part of the DynAPI
and are in the images.js file:

 Mouse Rollovers

I figured that the topic of mouse rollovers has kinda been beaten to
death so I didn't bother covering it previously. However due to the
number of people that asked me about it I'll quickly show how to do it
using my changeImage() function.

The idea behind rollovers is dead simple, when you put the mouse over an
image, it changes to a different image, and when you move your mouse out
of the image, it changes back. To accomplish this you have to surround
the IMG tag with an an anchor/hyperlink and call the changeImage()
function using the onMouseOver and onMouseOut events. The onMouseOver
and onMouseOut events have to be called from the hyperlink because in
Netscape the IMG tag does not have those events built into it.

Remember though, you have to point the anchor to somewhere before you
can use it. Most often rollovers are used in toolbars so you just stick
in the page you want it to go to. But in situations where you don't want
the hyperlink to go anywhere, you can instead insert
javascript:void(null) for the HREF. That is is just a command that does
absolutely nothing. The hyperlink will still exist - it just executes a
javascript command that does nothing.

<DIV ID="imgDiv">
 <A HREF="javascript:void(null)"
 onMouseOver="changeImage('imgDiv','myImg','imageB')"
 onMouseOut="changeImage('imgDiv','myImg','imageA')">

 </DIV>

37

Layer Writing

The contents of your layers (the text and HTML) can be re-written like a
variable by using a trick. It's well known that Internet Explorer has
the ability to change what's inside a DIV tag, but you can do a similar
thing in Netscape - and that's to use document.write's to re-write the
entire layer.

Internet Explorer 4.0:

In Explorer, you can access the HTML inside a DIV tag (or any other tag
for that matter) by writing:

document.all.divID.innerHTML = "your new text"

Where divID is the ID of the DIV tag you want to change. You can also
write it another way which I prefer more:

document.all["divID"].innerHTML = "your new text"

This way it evaluates "divID" as a string which will be more useful for
making it cross-browser capable.

Netscape Navigator 4.0:

Since each layer is essentially it's own document, it has most of the
capabilities that the main document does. Importantly for this lesson
you can re-write what's in that document.

Now to normally re-write a document, you'd use the document.write()
command for the text, and the document.close() command to signal that
the writing process has finished:

document.open() document.write("my text here") document.close()

For a CSS layer, you can use the Netscape Layers() array before using
document.write() and document.close():

document.layers["divID"].document.open()
document.layers["divID"].document.write("my text here")
document.layers["divID"].document.close()

Putting Them Together

The syntax differences between IE and Netscape lend themselves very
nicely to being included in one generic function that can do both at the
same time:

function layerWrite(id,nestref,text) {
 if (ns4) {
 var lyr = (nestref)?
eval('document.'+nestref+'.document.'+id+'.document') :
document.layers[id].document

38

 lyr.open()
 lyr.write(text)
 lyr.close()
 }
 else if (ie4) document.all[id].innerHTML = text
 }

Using this function all you have to do is tell it what layer to change,
and what text to change it too:

layerWrite("mylayer",null,"my text here")

39

Changing Styles

Internet Explorer's revolutionary DOM (Document Object Model) allows
almost all the styles of a page element to be both readable and
writeable at any time. This makes IE 4.0's Dynamic HTML system
fundamentally superior. Most likely in the version 5 of the browsers
this will be put on more even ground. However it is possible to mimic IE
4.0's functionality in Netscape 4.0 by using some clever tricks and
document.write()-ing new layers with different styles. That is what most
of this lesson is based around.

Changing the Background Color of a Layer

In Netscape to change the background color of a layer you have to set
the bgcolor property of it's document object:

document.layer["layerName"].document.bgColor = "red"

In IE, you set the backgroundColor property of the layer:

document.all["layerName"].style.backgroundColor = "red"

So a cross-browser function for both would look like this:

function setBGColor(id,nestref,color) {
 if (ns4) {
 var lyr = (nestref)?
eval('document.'+nestref+'.document.'+id):document.layers[id]
 lyr.document.bgColor = color
 }
 else if (ie4) {
 document.all[id].style.backgroundColor = color
 }
 }

Font Colors

To change the color of the text in a layer in IE is dead simple. Again,
you'd just change the CSS color style of the element:

document.all[id].style.color = "#FF0000"

But to do the same in Netscape will require a document.write() to
rewrite the layer with a different style. One way that works pretty good
is to use the antient FONT tag:

<DIV ID="mytext">My Text</DIV>

And then using the layerWrite() function, rewrite that layer with a new
color:

layerWrite('mytext',null,'My Text')

40

However, I will pass that over and avoid the FONT tag altogether. The
other general way to accomplish the task, is to predefine the styles
you're going to use:

<STYLE TYPE="text/css">
 <!--
 .orange {color:#FF8000;}
 .green {color:#008000;}
 #mytext {position:absolute; left:50; top:100;}
 -->
 </STYLE>

And instead of using the FONT tag, I'll use the SPAN tag:

<DIV ID="mytext">My Text</DIV>

Then my javascript function rewrites the layer and has the CSS CLASS as
an argument:

function mytextColor(color) {
layerWrite('mytext',null,'My Text')

}

In my case I can execute the function with either of the following
commands:

mytextColor('orange') mytextColor('green')

Text Rollovers

The primary use for changing font colors is to create text-based
rollovers to replace the need for image-based rollovers. I've
successfully created a system for doing this, however it's not a perfect
solution, tedius and a little ugly. I'll show the way I first tried to
do it, however I'll admit it doesn't work all that good. Still though I
believe it's important to show you the thought process involved in
fixing such problems.

Like the font color example, I just manually coded each of the styles I
wanted to use. In my case I have 4 layers each containing the link which
will change color when you roll over and off them:

 <STYLE TYPE="text/css">
 <!--
 A.red {color:red;}
 A.blue {color:blue;}
 #link0Div {position:absolute; left:50; top:50;}
 #link1Div {position:absolute; left:50; top:70;}
 #link2Div {position:absolute; left:50; top:90;}
 #link3Div {position:absolute; left:50; top:110;}
 -->
 </STYLE>

41

Since this is just a demo, I've used generic links and names for the
layers:

<DIV ID="link0Div"><A CLASS="blue" HREF="page1.html"
onMouseOver="linkOn('link0Div','page1.html','Link 1')">Link 1</DIV>
<DIV ID="link1Div"><A CLASS="blue" HREF="page2.html"
onMouseOver="linkOn('link1Div','page2.html','Link 2')">Link 2</DIV>
<DIV ID="link2Div"><A CLASS="blue" HREF="page3.html"
onMouseOver="linkOn('link2Div','page3.html','Link 3')">Link 3</DIV>
<DIV ID="link3Div"><A CLASS="blue" HREF="page4.html"
onMouseOver="linkOn('link3Div','page4.html','Link 4')">Link 4</DIV>

Notice in the links I've only stated the onMouseOver events. This was a
little trick I came up with. First it displays the onMouseOver, and when
the link changes color, I rewrite the contents of the layer but replace
the onMouseOver with an onMouseOut. That way there's never any
interuption in the rollover sequence.

I have a separate JavaScript function for each state of the link:

function linkOver(id,link,text) {
 layerWrite(id,null,'<A CLASS="red" HREF="'+link+'"
onMouseOut="linkOut(\''+id+'\',\''+link+'\',\''+text+'\')">'+text+'')
 }

 function linkOut(id,link,text) {
 layerWrite(id,null,'<A CLASS="blue" HREF="'+link+'"
onMouseOver="linkOver(\''+id+'\',\''+link+'\',\''+text+'\')">'+text+'')
 }

The format of each of my links are the same, so I only needed to make
the layerName (id), hyperlink location (link), and the displayed text
(text), variables.

However, in Netscape that example doesn't seem to work quite properly.
The onMouseOut's don't seem activate if you roll between links too
quickly. You need a way of double-checking to see if some of links are
still "on". So I decided to change how I set things up. I built a
2-dimensional array to keep track of the layer names, links, text, and a
flag (true/fase) to indicate whether link is highlighted or not
highlighted respectively.

 link = new Array()
 link[0] = new Array('link0Div','link1.html','Link 1',false)
 link[1] = new Array('link1Div','link2.html','Link 2',false)
 link[2] = new Array('link2Div','link3.html','Link 3',false)
 link[3] = new Array('link3Div','link4.html','Link 4',false)

Now we have a way of accessing any of the layer/links by numbers
(0,1,2,3). To access any one of the link values I just write link[x][0]
for the layer name, link[x][1] for the hyperlink etc. where x is the
number of the link.

42

The linkOver() and linkOut() functions have to be updated to account for
these changes. In those functions I added a line to set the flag value
of the link (the link[x][3]) - true meaning "on" and false meaning
"off". It was when onMouseOut occured that Netscape had the problems
with. So to correct it, I do a little check the next time you do an
onMouseOver (and hence call the linkOn() function) it goes through a
loop to check the value of the flag of each link, if it's true it
automatically calls the linkOut() function to force the link off.

function linkOver(num) {
 if (ns4) {
 for (var i=0;i<link.length;i++) {
 if (link[i][3]==true) linkOut(i)
 }
 }
 link[num][3] = true
 layerWrite(link[num][0],null,'<A CLASS="red" HREF="'+link[num][1]+'"
onMouseOut="linkOut('+num+')">'+link[num][2]+'')
 }

 function linkOut(num) {
 link[num][3] = true
 layerWrite(link[num][0],null,'<A CLASS="blue" HREF="'+link[num][1]+'"
onMouseOver="linkOver('+num+')">'+link[num][2]+'')
 }

The HTML for the links also have to be updated, the linkOver() and
linkOut() functions only need to pass the index of the link now.

<DIV ID="link0Div"><A CLASS="blue" HREF="page1.html"
onMouseOver="linkOver(0)">Link 1</DIV>
<DIV ID="link1Div"><A CLASS="blue" HREF="page2.html"
onMouseOver="linkOver(1)">Link2</DIV>
<DIV ID="link2Div"><A CLASS="blue" HREF="page3.html"
onMouseOver="linkOver(2)">Link 3</DIV>
<DIV ID="link3Div"><A CLASS="blue" HREF="page4.html"
onMouseOver="linkOver(3)">Link4</DIV>

And there we have it, a working text rollover.

Of course, this technique can be used to change more than just the
color, you can change other properties of the text by just defining your
CSS values differently. The following makes the underline disappear, and
when the link is on it makes the text in italics:

A.blue {color:blue; text-decoration:none;} A.red {color:red;
text-decoration:none; font-style:italic;}

Font Scaling

Font scaling (making text grow or shrink) is technically possible with
Dynamic HTML, however the truth is it by no means is the best technology
to accomplish it with. Something like Flash is much better and faster,
and with the upcoming Flash 3.0 vector graphics/animation format it

43

looks like it'll definately be the choice of developers in the next
version of the browsers. But until that time, you can certainly play
around and accomplish something similar with just plain old JavaScript
and CSS.

The concept of font scaling is exactly the same as the technique for
changing colors. You first pre-define the CSS styles you're going to
use:

.s10 {font-size:10pt;}

.s15 {font-size:15pt;}

.s20 {font-size:20pt;}

.s26 {font-size:26pt;}

And have a layer that first displays one of them:

<DIV ID="welcomeDiv">Welcome</DIV>

Then is just a matter of writing a function that re-writes that layer
pointing to different style:

function fontScale(size) {
 layerWrite('welcomeDiv',null,'Welcome')
 }

For the following example I just have simple links that make the text
bigger or smaller:

10 pt

15 pt

20 pt

26 pt

But of course that's not very fun. We can of course animate our font
scaling so that the text appears to grow, or shrink if we want. To do
that we'll need a lot of styles defined - one for each step in the
sequence. It's easiest to do that in a loop to write out each style. I
decided to have a font-scaling which goes from 10 to 50 points:

 var sizestr = '<STYLE TYPE="text/css">\n'
 for (var i=10;i<=50;i++) sizestr += '.s'+i+' {font-size:'+i+'pt;}\n'
 sizestr += '</STYLE>'
 document.writeln(sizestr)

I kept the function for cycling through the styles pretty simple. I just
have a variable size which keeps track of which style is currently
shown, and increment that by one each iteration. The if statement (if
(size<50)) will determine when to end the loop.

 var size = 10
 function scaleWelcome() {
 if (size<50) {
 size++

44

 layerWrite('welcomeDiv',null,'Welcome')
 setTimeout('scaleWelcome()',30)
 }
 }

Then just activate the function and it'll make the text grow
incrementally larger.

That example has the text stuck to the left - as the text grows it
doesn't re-adjust to the new size and ends up looking a little awkward.
To solve that problem you can center the text by using either <DIV
ALIGN="CENTER"> or the old <CENTER> tag. Although when you do this it's
probably best to have a container layer with which you control the
position with, then your text layer resides within it and centered. In
the following example I've shown how to set that up.

45

External Source Files

The content shown in your layer can be called from an external file.
However, the way you do it in Netscape is totally different than for IE
so you will have to create totally browser specific code to do it.

There are 2 ways to accomplish this task:

Technique 1: Using LAYER and IFRAME

The CSS 1 standard does not have the ability to have it's contents to be
initially called from an external file. But both browsers have a way
that you can accomplish the same thing without using CSS at all.

Netscape's antiquated LAYER tag has an attribute (SRC) by which you can
call an external file to be it's contents. Here's an example:

<LAYER NAME="textLayer" SRC="text.html" LEFT=50 TOP=50 WIDTH=300
HEIGHT=200 CLIP="0,0,300,200"></LAYER>

Layers work exactly the same way that CSS works, except the styles are
made into attributes of the Layer tag.

However IE does not recognize the LAYER tag because it is a proprietory
tag that Netscape introduced. When it reads the layer tag it will ignore
it. But IE has it's own way of calling external files using the IFRAME
tag. IFRAME, an inline frame, works just like normal frames except it's
embedded into the page like a plug-in does. You can then position the
IFRAME using CSS to put it anywhere on the page thereby mimicking what
the LAYER tag does.

<STYLE TYPE="text/css"> #textDiv {position:absolute; left:50; top:50;
width:300; height;200; clip:rect(0,300,200,0);} </STYLE>

<DIV ID="textDiv"> <IFRAME SRC="text.html" NAME="textFrame"
SCROLLING="No" WIDTH="300" HEIGHT="200" MARGINWIDTH=0 MARGINHEIGHT=0
FRAMEBORDER="No"></IFRAME> </DIV>

By combining these 2 techniques you can have a page which loads the
contents automatically.

Changing the Source File

In Netscape, to change the source for the Layer you change the .src
property:

document.layerName.src = "newfile.html"

In IE, you change the src of the frame as if it were a normal frame:

parent.frameName.document.location = "newfile.html"

For the last example we can make one unified function that will do both

46

the Netcape and IE code at once:

function load(page) {
if (ns4) document.textLayer.src = page
else if (ie4) parent.textFrame.document.location = page

}

Using this function we can change the page by writing:

load("newpage.html")

Advantages:

• the contents for the layer/div will immediately be available
• the content pages can contain other JavaScript functions as long as you put in a

few extra commands once in a while

For example, to call a function in the main document you have to use
parent.functionName() instead of just functionName(). This is because
remember in IE, the contents are in another frame even though it doesn't
look like it.

Disadvantages:

• the IFRAME has the same disadvantages as using normal frames, they are totally
opaque and you cannot lay other layers on top of them

• for the same reason the IFRAME-layer cannot be transparent, and cannot be
nicely manipulated (slid, clipped, etc.) because it causes flickering when IE tries to
redraw it

Hopefully the next version of the browsers they'll include a new CSS
property like source:URL(filename.html) which will solve these problems.
But for a neat hack to get around using IFRAME in the normal manner you
can use technique 2...

Technique 2: Using IFRAME as a Buffer

With IE's ability to replace content by using it's innerHTML property,
you can transfer the content from an IFRAME to a regular DIV thereby
avoiding many of the display problems that IFRAME has. The only real
disadvantage in using this technique is that the HTML you see will not
be the real HTML - it will be a "virtual" layer. This makes your content
pages less flexible. Doing JavaScript in the content pages will be very
complex - I'm not even going to go into it. I'd only recommend using
this technique if your content pages are mostly static.

First off we need an IFRAME that will be the "buffer". You could do it
in this manner:

<SCRIPT LANGUAGE="JavaScript">
if (ie4) document.write('<IFRAME STYLE="display:none"
NAME="bufferFrame"></IFRAME>')
</SCRIPT>

47

Then you place one DIV which the content file will be loaded into:

<DIV ID="contents"></DIV>

Now for the Javascript. Here's a function to accomplish the task:

function loadSource(id,nestref,url) {
 if (ns4) {
 var lyr = (nestref)? eval('document.'+nestref+'.document.'+id) :
document.layers[id]
 lyr.load(url,lyr.clip.width)
 }
 else if (ie4) {
 parent.bufferFrame.document.location = url
 }
 }
 function loadSourceFinish(id) {
 if (ie4) document.all[id].innerHTML =
parent.bufferFrame.document.body.innerHTML
 }

The main part of the function will load the DIV directly with the
external file in Netscape. But in IE will it will load the buffer frame
named bufferFrame with the external file. The next obstacle is that you
need a way to determine when the external file is completely loaded, so
that you can then transfer the contenst of the frame to the DIV. There
is hack that will work in IE (see Inside DHTML), but it won't work in
Netscape. I forsee that it will be necessary for this to be done in
Netscape so I will resort to using BODY onLoad in the external file. You
merely call the loadSourceFinish() function and pass what DIV needs to
be updated:

<BODY onLoad="parent.loadSourceFinish(id)">

This is done in the external file. This is the external file I used in
the example below.

<HTML>
<HEAD>
<TITLE>Content Page</TITLE>
</HEAD>

<BODY onLoad="parent.loadSourceFinish('contents')">

This is my text. This is my text. This is my text. This is my text. This
is my text. This is my text. This is my text. This is my text.

</BODY>
</HTML>

The DynLayer Load Method

The DynLayer Object implements it's own load method which is an
alternative to using the above function.

48

49

Working With Forms

For Netscape, forms and layers don't work so well together. Again since Netsape
layers are essentially a whole different document, a form that crosses over several
layers cannot be accomplished. For example, the following will work fine in IE, but in
Netscape it won't work:

 <FORM>

 <DIV ID="layer1">
 <INPUT TYPE="Text" NAME="field1" SIZE="10">
 </DIV>

 <DIV ID="layer2">
 <INPUT TYPE="Text" NAME="field2" SIZE="10">
 </DIV>

 </FORM>

 The solution is that you have put a form into each layer:

 <DIV ID="layer1">
 <FORM NAME="form1">
 <INPUT TYPE="Text" NAME="field1" SIZE="10">
 </FORM>
 </DIV>

 <DIV ID="layer2">
 <FORM NAME="form2">
 <INPUT TYPE="Text" NAME="field2" SIZE="10">
 </FORM>
 </DIV>

But this poses a problem when you want to capture the values of the fields in
JavaScript or if you want to send the information to a CGI program. What you end up
having to do is "glue" the data together using JavaScript and then doing whatever
want with that information.

Remember in Netscape you have to reference the form with whatever layer it's within:

 document.layerName.document.formName.fieldName.value

 But in IE you just reference it as if it weren't in a layer:

 document.formName.fieldName.value

 Using this idea you can create some code that will extract the data from each field:

 if (ns4) {
 field1value = document.layer1.document.form1.field1.value
 field2value = document.layer2.document.form2.field2.value
 }
 if (ie4) {

50

 field1value = document.form1.field1.value
 field2value = document.form2.field2.value
 }

But what if you want to then send that information to a CGI program? CGI's can only
accept values from one form. So what you can do is create yet another form
with hidden fields:

 <FORM NAME="mainForm" ACTION="/cgi-bin/inputform.pl" METHOD="POST">
 <INPUT TYPE="Hidden" NAME="field1">
 <INPUT TYPE="Hidden" NAME="field2">
 </FORM>

 <DIV ID="layer1">
 <FORM NAME="form1">
 <INPUT TYPE="Text" NAME="field1" SIZE="10">
 </FORM>
 </DIV>

 <DIV ID="layer2">
 <FORM NAME="form2">
 <INPUT TYPE="Text" NAME="field2" SIZE="10">
 </FORM>
 </DIV>

The hidden fields in mainForm can be assigned the values from the other forms. Then
you can send that form to a CGI to interperet the data:

 function sendForm() {
 if (ns4) {
 document.mainForm.field1.value =
document.layer1.document.form1.field1.value
 document.mainForm.field2.value =
document.layer2.document.form2.field2.value
 }
 if (ie4) {
 document.mainForm.field1.value = document.form1.field1.value
 document.mainForm.field2.value = document.form2.field2.value
 }
 document.mainForm.submit()
 }

I've made a simple demo that should show how this can be used in a real application.
It's a simple 6-element form that could be used in a feedback form of some sort. I've
also created a Perl script that simply returns back what was sent to it in a generated
HTML page.

forms1.html - has each element split up into different forms and a function to glue the
data together and send it to the Perl script. This was just to make sure my JavaScript
and Perl scripts were working properly.

forms2.html - has each form in different layers and then allows you to flip between
them by simply hiding and showing the appropriate layers. Then when you get to
the last field you can submit the form.

51

forms-dhtml.txt source code for the perl script I used.

52

Page Templates

Using JavaScript/CSS page templates makes it easier to create an entire web site
that has consistent features that are "site-wide" such as toolbars and default styles.

By linking each of your pages to external stylesheets (.css files) and using external
JavaScript files (.js files) to write out your layers you can assemble your pages on
the fly and have a central location for changing parts of your pages throughout your
website. This is similar to what Server-Side Includes (SSI) do but when you use
JavaScript files you have a lot more control over what gets written to the browser.
For example you can determine what browser is being used and change the look
of the page accordingly, or you can do other things like center all the layers (as in
the Generating Layers lesson).

Also page templates, if used properly, can render the use of frames almost totally
obsolete. When you use frames in unison with layers, you are limited in that your
layers cannot cross over the frame borders. But by dynamically writing layers
throughout your site you can do anything that you can in a single layers page.

Your CSS can be linked from one source file by using the LINK tag:

<LINK REL=STYLESHEET HREF="filename.css" TYPE="text/css">

That file can contain any stylesheet information that needs to be implemented across
any number of html files (each of which must contain that LINK tag).

And similarly you can assign the source file for your JavaScript by using the SRC
attribute:

<SCRIPT LANGUAGE="JavaScript" SRC="filename.js"></SCRIPT>

When you're developing page templates, I'd suggest you develop them as normal (all
in one file) and then once you've got everything working, cut and paste the
pieces into separate files. The following page is setup so that it's easy to extract the
styles and the JavaScript which writes out the standard links for the page:

 <HTML>
 <HEAD>
 <TITLE>The Dynamic Duo - Page Templates Demo 1</TITLE>
 <STYLE TYPE="text/css">
 <!--
 #title {position:absolute; left:100; top:10; width:300; font-size:18pt; font-
weight:bold;}
 #links {position:absolute; left:10; top:40; width:100; font-size:12pt;}
 #content {position:absolute; left:100; top:55; width:400; font-size:10pt;}

 BODY {font-family:"Arial";}
 -->
 </STYLE>
 </HEAD>

 <BODY>

53

 <DIV ID="title">This is the Title</DIV>

 <SCRIPT LANGUAGE="JavaScript">
 document.writeln('<DIV ID="links">');
 document.writeln('Links:');
 document.writeln('
Page 1');
 document.writeln('
Page 2');
 document.writeln('
Page 3');
 document.writeln('</DIV>');
 </SCRIPT>

 <DIV ID="content">
 <P>This is the body content....
 </DIV>

 </BODY>
 </HTML>

Once that works, you can then make the CSS and JavaScript separate files that you
link to:

 <HTML>
 <HEAD>
 <TITLE>The Dynamic Duo - Page Templates Demo 2 [External Files]</TITLE>
 <LINK REL=STYLESHEET HREF="mystyles.css" TYPE="text/css">
 </HEAD>

 <BODY>

 <DIV ID="title">This is the Title</DIV>

 <SCRIPT LANGUAGE="JavaScript" SRC="mylinks.js"></SCRIPT>

 <DIV ID="content">
 <P>This is the body content...
 </DIV>

 </BODY>
 </HTML>

An easy concept to understand. However your pages will certainly be more
complicated than this, so be careful!

54

Introduction to Object Oriented DHTML

Object oriented programming (OOP) takes a little to get used to, but I
assure you if you've understood everything up until now, you (probably)
won't have any difficulty understanding this lesson. Using Object
Oriented DHTML is the next progression and will allow you to build more
sophisticated scripts in an organized way.

You want to use objects whenever you need to create more than one of
something. By creating one generic object, you can use it to create any
number of them without duplicating much of your code. This has a big
impact on your coding because it means you don't have to write as much
code, everything is organized nicely, and the JavaScript will execute
faster.

You can view Netscape's JavaScript tutorial for a comprehensive
explanation of how to create new objects. On this lesson I'll give a
brief overview of OOP and show how to make a simple reusable object for
working with layers. Everything I do in this tutorial from this point on
will be object-based so it's a good idea to follow along.

OOP Overview

When you create objects, really what you are doing is collecting a lot
of different variables into a nice neat package which you can then
easily access at a later time. Each object is it's own package, and the
variables in that package are referred to as properties. You can then
write functions which manipulate only the variables (properties) of that
object, these are referred to as methods.

Using objects are helpful because they are designed so that they can be
cloned to make many different objects that will be used similarly.
Without confusing you yet, say we had a generic object named "block".
Then we decided we want to have several blocks (block1, block2, block3
etc.) that all had similar variables (height, width, depth etc.). Using
object oriented programming, the variables in the blocks are all
collected together in this format:

Object Name block1 block2 block3
property 1 block1.width block2.width block3.width
property 2 block1.height block2.height block3.height
property 3 block1.depth block2.depth block3.depth

This is the basic set-up for all JavaScript objects:

function objectName(arguments) { this.propertyName = somevalue }

So to create this generic "block" object, the code would look something
like this:

function block(width,height,depth) {
this.width = width
this.height = height

55

this.depth = depth
}

Notice that any variable defined with "this" in front of it becomes a
property of the object. Many of the properties will initially be
assigned values based on those passed in the arguments, but you can also
set other default properties to whatever you'd like, for example:

function block(width,height,depth) {
this.width = width
this.height = height
this.depth = depth
this.color = "red"

}

...would make the width, height, and depth change depending on how it's
initialized, but all the blocks would have a color property of "red".

Once this generic object function is created, you can clone objects
based on this code, this is referred to as creating an instance of an
object. The format for creating instances of a self-defined object is as
follows:

newObjectName = new objectName(arguments)

So to create the block objects named block1, block2, and block3 you'd
write:

block1 = new block(10,20,30)
block2 = new block(5,20,10)
block3 = new
block(15,30,15)

After they're defined you can do whatever you'd like with the object,
check it's properties, or change them. Properties of an object work
exactly the same way as normal variables do.

Once you've got the object function itself created, you can extend the
functionality of the object by creating methods for it. The format for
creating a method is as follows:

function objectName(arguments) {
this.propertyName = somevalue
this.methodName = methodFunction

}

function methodFunction(arguments) { // write some code for the object }

The methodFunction() works like any other function, except when you call
the function you add the name of the object you want to apply the
function to:

newObjectName.methodFunction()

56

So using this idea, we can add a method to the block object that
calculates the volume of the block and returns the value:

function block(width,height,depth) {
 this.width = width
 this.height = height
 this.depth = depth
 this.color = "red"
 this.volume = blockVolume
 }
 function blockVolume() {
 return this.width*this.height*this.depth
 }

To find the volume of block1 you write:

block1.volume()

newobjects1.html has this simple block object and allows you to check
the values of the properties and the volume using alert's.

Objects and Layers

Using the concepts from previous lessons, we can apply object oriented
programming to make working with layers a much easier task. Instead of
always re-writing initialization code for pointer variables, you can
create generic objects that do the same thing with just one line of
code.

Recall again what pointer variables are doing:

if (ns4) layer1 = document.layer1Div
else if (ie4) layer1 = layer1Div.style

...which is synonymous with:

if (ns4) layer1 = document.layers["layer1Div"]
else if (ie4) layer1 = document.all["layer1Div"].style

In this case, layer1 is a reference variable which points to the CSS
properties of the layer named "layer1Div". If you've been using pointer
variables on your own, you'll know that to create many pointer variables
is rather cumbersome. To solve that problem I'm going to make a generic
object that creates a css property which does the same thing as pointer
variables do:

function layerObj(id) {
if (ns4) this.css = document.layers[id]
else if (ie4) this.css = document.all[id].style

}

To use this layerObj object, you can now initialize your pointer
variables with only:

57

layer1 = new layerObj("layer1Div")

Once the layer1 object is initialized you can access the css properties
of "layer1Div" by using:

layer1.css.left layer1.css.top layer1.css.visibility etc....

So all that's really changed is the extra css between everything. We can
further extend the layerObj object by automatically defining x and y
properties which will represent the left and top properties of the
layer:

function layerObj(id) {
 if (ns4) {
 this.css = document.layers[id]
 this.x = this.css.left
 this.y = this.css.top
 }
 else if (ie4) {
 this.css = document.all[id].style
 this.x = this.css.pixelLeft
 this.y = this.css.pixelTop
 }
 }

So again if we were to create a layer1 object:

layer1 = new layerObj("layer1Div")

The layer1 object would have these properties:

layer1.css
layer1.x
layer1.y

Note that we can now use x and y as our properties because this is our
own object we're working with. I was using xpos and ypos before because
Netscape already included those properties as part of it's own Layer
object. Since we're creating a new object we can name the properties
whatever we like.

Making Methods

We can extend the functionality of the layerObj object to make it easy
to manipulate layers just as we can create separate individual
functions. Recall in the Moving Layers lesson I made a generic functions
that can be used to move a layer to any position on the screen:

function moveBy(obj,x,y) {
 obj.xpos += x
 obj.left = obj.xpos
 obj.ypos += y
 obj.top = obj.ypos
 }

58

 function moveTo(obj,x,y) {
 obj.xpos = x
 obj.left = obj.xpos
 obj.ypos = y
 obj.top = obj.ypos
 }

Those functions translated into methods of the layerObj object look like
this:

 function layerObj(id) {
 if (ns4) {
 this.css = document.layers[id]
 this.x = this.css.left
 this.y = this.css.top
 }
 else if (ie4) {
 this.css = document.all[id].style
 this.x = this.css.pixelLeft
 this.y = this.css.pixelTop
 }
 this.moveBy = layerObjMoveBy
 this.moveTo = layerObjMoveTo
 }
 function layerObjMoveBy(x,y) {
 this.x += x
 this.css.left = this.x
 this.y += y
 this.css.top = this.y
 }
 function layerObjMoveTo(x,y) {
 this.x = x
 this.css.left = this.x
 this.y = y
 this.css.top = this.y
 }

Again if we were to create a layer1 object:

layer1 = new layerObj("layer1Div")

We can then move the layer by using either the moveBy() or moveTo()
methods:

layer1.moveBy(-5,10) layer1.moveTo(100,100) etc.

Where to go from here

This tiny object would only be used in very specific instances where all
you need to do is move the layer around in a simple manner. The way I've
made this object doesn't account for nested layers, so if you need to
use nested layers you'd have to change the code to include the extra
parent layers. The above object is actually derivative of The Dynamic

59

Layer Object. It is a unified cross-browser object oriented solution for
DHTML.

BrowserCheck Object

With the advent of new browsers I needed a more sohpisticated browser
checking solution - the document.layers and document.all check that I've
been using will not suffice when we need to work with Netscape 4.0, 5.0
and Internet Explorer 4.0 and 5.0. We need a way to individually check
for them. So I've built the BrowserCheck Object. This object is
including within the DynLayer, and as well as a separate js file if you
want to use it when you're not using the DynLayer.

This object will automatically define an instance of itself as "is":

is = new BrowserCheck()

The is object has the following properties

is.b - (String) browser name, converted to "ns" if Netscape, "ie" if Internet Explorer
is.v - (integer) version number (2,3,4,5 etc.)
is.ns - (boolean) Netscape 4 or greater
is.ns4 - (boolean) Netscape 4
is.ns5 - (boolean) Netscape 5
is.ie - (boolean) Internet Explorer 4 or greater
is.ie4 - (boolean) Internet Explorer 4
is.ie5 - (boolean) Internet Explorer 5
is.min - (boolean) Netscape 4 or 5, or Internet Explorer 4 or 5

This combination of properties will serve almost all your needs with
respect to DHTML - that's all this object is designed to do. You could
extend this to check for operating systems and mime-plugins or whatever.

So now you no longer need the following lines on any pages:

ns4 = (document.layers)? true:false
ie4 = (document.all)? true:false

Instead add the browser.js file to your page:

<script language="JavaScript" src="../dynapi/browsercheck.js"></script>

Or, if you are already using the DynLayer you don't need to do anything.
The DynLayer has the BrowserCheck Object in its source.

60

The Dynamic Layer Object API

The Dynamic Layer Object API (DynLayer) is a lightweight object that provides a
highly flexible manner of working with layers. Not only does it have common
properties and methods for manipulating layers, it is an object based API which opens
up a new way of working with layers that far exceeds the traditional way of coding
DHTML. I've found it to be the ideal foundation for nearly every application of DHTML
including animation, applications, and gaming environments.

All of the next lessons in this tutorial will use the DynLayer as the basis for
accomplishing some other task, so it is important that you understand how it works
and how to use it.

Features of the DynLayer Object:

• an object-based API that is easy to implement and use
• targets layers in a similar manner that I've used pointers to target layers - to

avoid the problems of the different object models between Netscape and IE
• automatic nested layer handling
• full support for working with layers in separate frames
• provides it's own properties and methods for changing the location of the layer -

to avoid the position problems associated with Microsoft's proprietory way
ofchanging the location

• has the handy hide() and show() methods to change the visibility
• exposes a common event model for layer-based events
• has built-in slide, clip, and write methods
• includes css() function to auto-generate CSS syntax
• easy to make extensions such as wipe, glide, background color, external source

files etc.

Quick Summary of what the DynLayer Does

Instead of using the true commands for manipulating layers, you make a DynLayer
object and tell it the name of the layer that it will be used for. The DynLayer object
will have 3 main properties:

• doc - points to "document.layername.document" in Netscape 4, and "document" in
IE and Netscape 5 (Mozilla)

• elm - points to "document.layername" in Netscape 4, "document.all['layername']" in
IE, and "document.getElementById('layername')" in Netscape 5

• css - points to elm in Netscape 4, elm.style in IE and Netscape 5

This manner gives us a similar way to access properties and methods of layers no
matter which browser is being used.

The DynLayer then has other properties such as (x,y) to hold various information
needed to operate the DynLayer, and has methods such as hide() show() and
slideBy() and slideTo() to manipulate the layer. Read the next sections of the
DynLayer for specific usage of these methods.

61

Initialization of DynLayers

The DynLayer can be applied to any layer using this general format:

objectName = new DynLayer(id,nestref,iframe)

Where:

objectName Name of the object - how you will reference the DynLayer object.

id ID of the layer to which this DynLayer is being applied to, this cannot be the same
as the objectName

nestref (now optional in most circumstance). Nested reference to that layer

iframe Name of the iframe that the layer is contained. This is used when you need to
manipulate a layer inside an IFrame. Currently IFrame is only a feature of is.ie.

Simple Layer Example:

Let's say you have a very simple layer with this structure:

<STYLE> #mylayerDiv {position:absolute; left:30; top:50;} </STYLE>

<DIV ID="mylayerDiv"></DIV>

To initialize 'mylayerDiv', your javascript will be:

mylayer = new DynLayer('mylayerDiv')

Notice how I append the 'Div' extension on the ID of the layer. I do
this is because the name of the object cannot be the same as the ID of
the layer. It's just a nice way to keep your variables separate.

Nested Layer Example:

I updated the DynLayer so that in most circumstances working with nested
layers is exactly the same as working with non-nested layers.

If you have nested layers like this:

<DIV ID="myparentDiv"> <DIV ID="mylayerDiv"></DIV> </DIV>

If you wanted to use the nestref parameter you could initialize both of
them like this::

myparent = new DynLayer('myparentDiv')
mylayer = new DynLayer('mylayerDiv','myparentDiv')

However, nestref is now optional, so you if you don't send the nestref
parameter for the nested layer it will still work:

myparent = new DynLayer('myparentDiv') mylayer = new

62

DynLayer('mylayerDiv')

Notice the name of the parent layer is passed for the nestref argument.

Nestref for Multiple Nesting:

Again, no difference here, simply send the ID of the layer to the
DynLayer and it will take care of the nested referencing itself. But for
argument's sake, lets say you had these layers:

<DIV ID="myparent1Div">
<DIV ID="myparent2Div"> <DIV
ID="mylayerDiv"></DIV>
</DIV> </DIV>

In this case if you need to use the nestref parameter you must pass the
names of all layers in that hierarchy separated by '.document.':

mylayer = new
DynLayer('mylayerDiv','myparent1Div.document.myparent2Div')

The pattern continues no matter how many times it's nested.

Working with Layers in separate Frames:

The DynLayer can be used to work with layers that are withing separate
Frames, or IFrames (for IE only). In this case sending a nestref
parameter for nested layers is manditory.

Note: This has changed, you must now send the frame reference as an
object, no longer as a string

mylayer = new DynLayer('mylayer',null,parent.myframe) // send the frame
object reference

Assigning DynLayers Using Arrays:

If you have a sequencial set of layers you could alternatively assign
DynLayers to Arrays rather than just variable names.

<DIV ID="mylayer1"></DIV>
<DIV ID="mylayer2"></DIV>
<DIV ID="mylayer3"></DIV> <DIV ID="mylayer4"></DIV>

To initialize these you could do:

mylayer = new Array()
for (var i=0;i<4;i++) {

mylayer[i] = new DynLayer("mylayer" + i)
}

63

DynLayerInit() Function

Note: This function is now mandatory. Even if you do not specifically
call this function, the first time you assign a DynLayer, the
DynLayerInit() function will automatically be called to assign whatever
layers have a "Div" in their ID, as well as find all the nestref's for
all layers in the page. So you don't necessarily ever have to call this
function manually unless you don't plan on assigning any DynLayers
yourself.

The DynLayerInit() function is used to initialize all your DynLayers at
once automatically and is used by the DynLayer to take care of all
nested heirarchy work for Netscape. The way it works is by sniffing
through the names of all layers in the page. Any layers that contain an
ID with a "Div" extension on it will be automtically assigned to a
DynLayer. This function does not apply to layers inside Frames or even
more advanced circumstances like external files or dynamically generated
layers.

As noted, you only have to call the DynLayerInit() function manually if
you do not have any layers that don't have a "Div" extension, and
therefore won't need to manually define any layers at all. Just call the
function in your default init() function:

function init() { DynLayerInit() }

As long as you follow my lead of appending a "Div" to the names of your
layers it will do the same thing as defining your layers manually. For
example say you had a layer named "blueDiv" like this:

<STYLE TYPE="text/css">
#blueDiv {position:absolute; left:50; top:50;}
</STYLE>
<DIV ID="blueDiv"></DIV>

The DynLayerInit() function will automatically execute the code to
initialize it:

blue = new DynLayer("blueDiv")

So any layers that have a "Div" extension never have to be initialized
manually. This includes nested layers. Note though, layers that are
contained in external files, different frames must be manually assigned.

Also note, the names of your layers may be something other than with the
"Div" extension. However, DynLayerInit() will not automatically define
these, although it will find it's nestref value so that you don't have
to pass it it.

64

DynLayer Properties

Once you have applied the DynLayer to a layer, you have a unified way of
referencing the layer for both Netscape and IE. From that point on you
can use the DynLayer to retrieve and change the properties of the layer
using a single command.

Core Properties

In most cases it is only necessary to have movement control of the
layer. The core properties of the DynLayer provide the foundation for
controlling the location of a layer.

css - points to the CSS properties of the layer
elm - points to the actual HTML element
id - retrieves the ID of the layer/element
x - stores the "left" location
y - stores the "top" location
w - captures the initial width
h - captures the initial height
doc - points to the document object for the layer
obj - a string property of the object which points to itself The css Property:

The css Property:

The css property is the way you directly reference the CSS properties of
the layer. It is the equivalent to how I've used pointers in previous
lessons. For Netscape it points to document.layer[id], and for IE it
points to document.all[id].style

When you need to retrieve or change any of the CSS properties you
reference the property in this manner:

objectName.css.propertyName

For example to retrieve the z-index of a "mylayer" DynLayer you'd use:

mylayer.css.zIndex

This can be done for any of the CSS properties. However in practice it
is rarely necessary to call the css property manually because the
DynLayer takes care of most of them: left, top, visibility, and clip
value. The only property that you'd ever really need to access using the
css property is zIndex.

The elm Property:

This points to the actual HTML element object. For Netscape it is
equivalent to the css property. But for IE it points to document.all[id]
rather than document.all[id].style. For basic DHTML animation and such
this property isn't necessary, but there are situations where this is
needed (check the Using Layer-based Events and Scroll Concepts lesson
for an example).

65

The x and y Properties:

The x and y properties always contain the current location of the layer.
They are equivalent to how I've been using the xpos and ypos properties
in previous lessons. Using these separate properties is a personal
preference of mine because I fell it is cleaner (as well as more
efficient) to access the location of a layer as a property.

To retrieve the current location of the layer you use either:

objectName.x or objectName.y

As before, you have to ensure that the x and y properties are in synch
with the actual left and top properties by copying the values:

objectName.x += 10 objectName.left = objectName.x

But you often never have to do that because I've included the moveTo()
or moveBy() methods which change the location of the layer for you.

Instead of having the x and y properties you could optionally write your
own methods like getLeft() or getTop() for extracting the current
location. But you can do that on your own if you want to.

The w and h Properties:

Just as you can retrieve the location of the layer using x and y, you
can retrieve the width and height of the layer using w and h:

objectName.w or objectName.h

The doc Property:

The doc property can be used when you want to access other elements
inside the layer such as images and forms. In Netscape it points to
document.layers[id].document, but in IE it points just to the main
document. This is necessary because Netscape handles contents in layers
as separate documents.

Element inside the layer should be called by:

mylayer.doc.elementName

// changing images mylayer.doc.images["myImage"].src = newimage.src

// get form value mylayer.doc.myform.myformfield.value

Read the Changing Images and Working With Forms lessons for more
thorough explanations on those topics. There is also the image() method
extenson.

The obj Property

66

The obj property is a string reference to the DynLayer. This property is
necessary when methods use setTimeouts, setInterval, or eval's to call
itself. Both of those statements only accept strings. For example you
cannot have a setTimeout inside a method when it is set up like this:

setTimeout(this + ".methodName()",100)

Instead you have to use the obj property:

setTimeout(this.obj + ".methodName()",100)

The obj property is used by addon methods such as the slide and wipe
methods, as well as other objects that use the DynLayer, and all my
widget objects. It's extremely useful.

Using Layer-based Events

Pre-requisite: You should read the Document Mouse Events lesson before
reading this one.

Using the elm property you can define events for your layer such as
onMouseOver, onMouseOut, onMouseDown, onMouseUp, onMouseMove, and
onClick.

In Netscape you can't mark up the event handlers like you can with an
anchor:

<DIV ID="divName" onMouseDown="/*your code*/"></DIV>

However, you can define handlers directly using JavaScript. For Netscape
you use:

document.layer[id].captureEvents(Event.MOUSEDOWN)
document.layer[id].onmouseover = downHandler

For IE:

document.all[id].onmouseover = downHandler

For a cross-browser solution you can define the handlers using the
DynLayer elm property (which points to the actual element rather than
the CSS properties):

objectName.elm.onmousedown = layerDownHandler
objectName.elm.onmouseup = layerUpHandler
objectName.elm.onmouseover = layerOverHandler
objectName.elm.onmouseout = layerOutHandler
objectName.elm.onmousemove = layerMoveHandler
objectName.elm.onclick = layerClickHandler
if (is.ns) objectName.elm.captureEvents(Event.MOUSEDOWN | Event.MOUSEUP |
Event.MOUSEMOVE)

67

Make sure you define the mouse events using all lowercase. The handler
names can be whatever you choose.

For Netscape you have to manually capture the events that you want to
use. You can see in the captureEvents line how to set them up. If you
don't need one of them just remove it from the command. You do not need
to capture the mouseOver and mouseOut events as it appears they are
captured by default.

Another way to define your handlers is to use the new Function()
command. Doing it this way you can pass parameters quite easily.

objectName.elm.onmousedown = new Function("layerDownHandler('my
string!')")
if (is.ns) objectName.elm.captureEvents(Event.MOUSEDOWN)

function layerDownHandler(string) {
status = string

}

There is yet another way to pass parameters, you can temporarily define
sub-properties to the dynlayer event property, and retrieve them in the
handler function:

objectName.elm.string = "my string!"
objectName.elm.onmousedown = layerDownHandler
if (is.ns) objectName.elm.captureEvents(Event.MOUSEDOWN)

function layerDownHandler() {
status = this.string

}

Using Mouse Coordinates

In the handler functions you can retrieve the location of the mouse by
using the following commands:

var x = (is.ns)? e.layerX:event.offsetX
var y = (is.ns)? e.layerY:event.offsetY

The x and y variables can then be used to do whatever you wish. For
example, here's some code that will display the location of the mouse
while over the layer:

function init() {
 mylayer = new DynLayer("mylayerDiv")
 mylayer.elm.onmousemove = layerMoveHandler
 if (is.ns) mylayer.elm.captureEvents(Event.MOUSEMOVE)
 }

function layerMoveHandler(e) {
 var x = (is.ns)? e.layerX:event.offsetX
 var y = (is.ns)? e.layerY:event.offsetY
 status = x+","+y

68

 }

Core DynLayer Methods

The core methods (moveTo(), moveBy(), show(), and hide()) are by default
included in the DynLayer. They are always available because they are
used quite often.

The moveTo() Method:

The moveTo() method moves the layer to a specific coordinate:

objectName.moveTo(x,y)

If you need to only change one of x or y why you can send null for the
value:

objectName.moveTo(x,null) or objectName.moveTo(null,y)

Examples:

mylayer.moveTo(100,50) mylayer.moveTo(100,null) mylayer.moveTo(null,50)

The moveBy() Method:

The moveBy() method will shift the location of a layer by a specified
number of pixels:

objectName.moveBy(x,y)

Example:

mylayer.moveBy(5,0)

The show() and hide() Methods:

For changing the visibility I've included the methods show() and hide().
Their are no parameters to pass so their usage is simple:

objectName.show() objectName.hide()

In the standard DynLayer I haven't included any way to retrieve the
visibility, only because I've found there's very few instances where you
need to find the visibility (usually you already know if it's visible or
not). But you could of course extend the DynLayer to keep track of that
if need be.

69

Slide Methods

The slide methods provide an easy solution for creating simple
straight-line animations. The slide methods are now automatically
assigned to all DynLayers, so you can use them at any time.

The slideTo() Method:

The slideTo() method will slide the DynLayer to a specific coordinate.

objectName.slideTo(endx,endy,inc,speed,fn)

Where:
endx - the final x coordinate
endy - the final y coordinate
inc - the incrementation amount (the number pixel units to move each repetition)
speed - the speed of repetition in milliseconds
fn - (optional) the function or statement to be executed when the slide is complete

If you want the DynLayer to slide in a horizontal line pass null for the
endy value. And if you want the DynLayer to slide in a vertical line
pass null for the endx value.

Examples:

To slide the DynLayer to coordinate (100,50), in increments of 10 pixel
units, at 20 milliseconds per repetition:

mylayer.slideTo(100,50,10,20)

To slide the DynLayer horizontally to the x-coordinate 80:

mylayer.slideTo(80,null,5,30)

To pop up alert to notify when a slide is complete:

mylayer.slideTo(100,50,10,20,'alert("The slide is complete")')

When using the fn property from a hyperlink you must do a trick with the
quotes:

<A HREF="javascript:mylayer.slideTo(100,50,10,20,'alert(\'The slide is
complete\')')">

The slideBy() Method:

The slideBy() method will slide the DynLayer to another coordinate by
defining the amount of pixels to shift from it's current location
(similar to moveBy() but animated). The usage is very similar to
slideTo():

objectName.slideBy(distx,disty,inc,speed,fn)

70

Where:
distx - the amount of pixels to shift horizontally
disty - the amount of pixels to shift vertically
inc - the incrementation amount (the number pixel units to move each repetition)
speed - the speed of repetition in milliseconds
fn - (optional) the function or statement to be executed when the slide is complete

If you want the DynLayer to slide in a horizontal line pass 0 for the
endy value. And if you want the DynLayer to slide in a vertical line
pass 0 for the endx value.

Examples:

To slide the DynLayer on a diagonal 40 pixels left and 60 pixels down:

mylayer.slideBy(-40,60,5,20)

To slide the DynLayer 50 pixels to the right:

mylayer.slideBy(50,0,5,20)

Making Sequences:

I left the fn property so that you always have a way of determining when
the slide is complete. By taking advantage of this feature you can link
a series of slide()'s together to make a sequence of animations. Here's
an easy way to accomplish a sequence:

seq1 = 0
function sequence1() {
 seq1++
 if (seq1==1) {
 // commands for first part of sequence
 // link the slide back to this function to keep it going
 mylayer.slideBy(50,0,10,20,'sequence1()')
 }
 else if (seq1==2) {
 // commands for seconds part of sequence
 }
 else seq1 = 0 // reset to 0 so you can play the sequence again
 }

onSlide Handlers

I've added 2 event handlers to the Slide Methods:

onSlide - called in each and every step in the slide
onSlideEnd - called when the slide has finished (just like the "fn")

I have not put these handlers to large use, but it seems to work pretty
well, and are perhaps better to use than the "fn" parameter in the
slideBy() and slideTo() methods.

By default these handlers do nothing, but all you have to do is reset

71

them to some function after calling the slideInit() method:

mylayer.slideInit()
mylayer.onSlide = mylayerOnSlide // some function that runs each step in the slide
mylayer.onSlideEnd = mylayerOnSlideEnd // some function that runs when completed
the slide

Clip Methods

The clip methods give you a simple way to clip your DynLayers in the
same manner that I used the clip functions in the Clipping Layers
lesson.

Note: although the clip methods are now automatically assigned to all
DynLayers, you may still have to call the clipInit() method to initially
clip the layer so that IE will have base clip values to work from. I
will be looking into this further to hopefully remove this necessity.

Initialize The Clip Methods:

There are 2 different situations when applying the clip methods.

Situation 1: Clipped to the default values

This occurs when you have either a) have defined no clip values in your
CSS, or b) the values you have defined in your CSS are equal to that of
the width and height of the layer. In either case, to use the clip
methods you must define the width and the height of the layer in your
CSS. To initialize the clip methods in situation 1, you can use:

objectName.clipInit()

Situation 2: Clipped to arbitrary values

If you have clipped your layers other than that of the default values
you must initialize the clip methods in a different manner. For example
if your layer has a width of 100 and a height of 50, but you have
clipped your layer to (-10,-10,60,110), then you must pass those values
to the clipInit() method:

objectName.clipInit(clipTop,clipRight,clipBottom,clipLeft)

Example:

mylayer.clipInit(-10,-10,60,110)

This is necessary because IE cannot initaially determine the clip
values, the clipInit() function will re-clip the layer to those values
so that they can be determined thereafter.

Once you have initialized the clip methods, the DynLayer adds 3
additional methods by which you can retrieve or change the clip values.

72

The clipValues() Method:

The clipValues() method is used to retrieve the current clip value for
any of the 4 edges.

objectName.clipValues(which)

For the which argument, you pass the letter in quotes signaling which of
the edges you want to find the value of. So there are four different
ways of calling the method:

objectName.clipValues('l') // clip left value
objectName.clipValues('r') // clip right value
objectName.clipValues('t') // clip top value
objectName.clipValues('b') // clip bottom value

The clipTo() Method:

The clipTo() method will clip the edges of the layer to the specified
values:

objectName.clipTo(t,r,b,l)

Where: t - new clip top value r - new clip right value b - new clip
bottom value l - new clip left value

For any of the values which you do not want to change pass null for the
value.

Examples:

mylayer.clipTo(0,25,50,0) mylayer.clipTo(null,50,null,null)

The clipBy() Method:

The clipBy() method clips the edges based on their current value (as
moveBy() is to moveTo()). The usage is the same as clipTo():

objectName.clipBy(t,r,b,l)

IE 5.0 Notes:

Unfortunately in IE 5.0, there is no way for the DynLayer to retrieve
the initial clip values. So therefore if you want to do any complex
clipping (like in the exmple below) you must manually send the clip
values when calling clipInit().

Warning: IE works differently with respect to clipping. When you clip
outside of it's original boundaries (0,width,height,0) the background
will not show. The layer will still clip however (inwards), better to
view with both browser to see what I'm talking about. If you need to
extend the width/height of a layer when it has been clipped you must
also change the css.width and css.height values of the layer as well

73

(only for IE because Netscape cannot change the true dimensions on the
fly).

Write Method

I only recently decided to put the Write Method into my "standard"
dynlayer (although that's not a good name for it). Generally with the
DynLayer you only need to include the stuff that you want, and I wanted
this method in there because about 3 or 4 other lessons use this.

The DynLayer Write method allows you to re-write the contents of the
layers by using the document.write() command for Netscape, and the
innerHTML property for IE. Please read the Layer Writing lesson for a
full explanation of what's really going on when writing a layer.

Using the write method is very simple:

mylayer = new DynLayer(id,nestref,iframe)
mylayer.write(html)

Example:

mylayer = new DynLayer('mylayerDiv')
mylayer.write('my new content goes here')

DynLayer Functions

There are 2 other functions I need to explain:

The DynLayerTest() Function

The DynLayerTest() function was added only as a debugging function. I
really should have included this sooner as it really helps you when you
get into creating DHTML Objects. This function will automatically double
check your initialization (the id and the nestref parameters) to make
sure the layer in fact does exist before defining itself. It does not
check when you use IFrame, you're on your own with that.

If you happen to get the initialization wrong, the DynLayerTest()
function will show an alert() of what layer in the hierarchy is the
problem (<-- this layer cannot be found). This should help you figure
out what's wrong with your code. This function is redundant for layers
that are initialized by the DynLayerInit() function.

The css() Function

I'm including the css() function in the DynLayer because many of the
later lessons in this tutorial are using it. This is more a personal
preference than a necessity. Read the Generating Layers lesson for an
explanation of this function.

74

How To Extend The DynLayer

There are 4 different ways to extend the DynLayer

DynLayer Add-on Methods
DynLayer Add-on Objects
Objects Which Encapsulate The DynLayer
Objects Which Internally Use The DynLayer

DynLayer Add-on Methods

It is quite easy to add you own methods to the DynLayer. Just create
your own function:

function DynLayerMyNewMethod() {
// code for this method

}

This method is not available to the DynLayer until you "attach" it.
There are 3 ways to do this

1. Use the prototype command (recommended) This way your method will be
 available to all DynLayers that you define

DynLayer.prototype.myNewMethod = DynLayerMyNewMethod

You can either make your own .js file and include both the function and
the prototype call in that function, or include these in the dynlayer.js
source file itself.

2. Include your method in the constructor (not recommended): This will do
 the same as a prototype but all methods of the DynLayer now use
 prototyping

function DynLayer(id,nestref,frame) {
... code in constructor
this.myNewMethod = DynLayerMyNewMethod

}

3. Assign the method explicitly to a specific DynLayer

This way your method will only be available to a specific DynLayer. In
some instances this may be preferrable.

mylayer.myNewMethod = DynLayerNewMethod

DynLayer Add-on Objects

If you require an addition to the DynLayer which contains it's own set
of properties and several methods, you may want to make it it's own
object and append it to the DynLayer. What I suggest you do is pass the
new object information so that it is still able to update the DynLayer.
Do do this the object will require the name of the DynLayer, as well as

75

the name of the add-object:

objectName = new DynLayer("objectNameDiv")
 objectName.myobject = new MyObject("objectName","myobject")

 function MyObject(dynlayer,name) {
 this.dynlayer = dynlayer
 this.name = name

 this.value = eval(this.dynlayer+'.x') + 100 // use eval's to capture data
 from the Dynlayer

 this.method = MyObjectMethod
 this.repeat = MyObjectRepeatMethod // repeats MyObjectMethod using
 setTimeout
 }
 function MyObjectMethod() {
 eval(this.dynlayer+'.moveBy(10,10)') // use eval's to assemble the name
 of the DynLayer
 }
 function MyObjectRepeat() {
 setTimeout(this.dynlayer+'.'+this.name+'.method()',50) // use eval's to
 assemble the name of the object's method
 }

Then to use the add-on object you use this general format:

objectName.myobject.method() or
objectName.myobject.repeat() etc.

This tactic is used by the Geometric Objects, and the Path Object.

Objects Which Internally Use The DynLayer

If you want one object to control multiple layers, your best bet is to
assign properties which are in fact DynLayers.

Option 1: Send the object the names of the layers, and let the object
define the DynLayers

myobject = new MyObject('layer1Div','layer2Div')

function MyObject(lyr1,lyr2) {
this.lyr1 = new DynLayer(lyr1)
this.lyr2 = new DynLayer(lyr2)

}

This way, the main object (MyObject) can control both those layers by
using the properties and methods of those DynLayers. For example you
could create a method by which it slides both layers in unison:

myobject = new MyObject('layer1Div,'layer2Div')

function MyObject(lyr1,lyr2) {
this.lyr1 = new DynLayer(lyr1)
this.lyr1.slideInit()

76

this.lyr2 = new DynLayer(lyr2)
this.lyr2.slideInit()
this.slideBoth = MyObjectSlideBoth

}
function MyObjectSlideBoth() {

this.lyr1.slideBy(-100,0,5,50)
this.lyr2.slideBy(100,0,5,50)

}

This tactic is used by all of the widgets/components, however usually
what I do is generate layer names automatically, but it's still the same
basic idea.

Option 2: Pre-define your DynLayers and send the object the names of the
DynLayers

mylayer = new DynLayer("mylayerDiv")
myobject = new MyObject(mylayer)

function MyObject(dynlayer) {
this.dynlayer = dynlayer // do something with this.dynlayer

}

This tactic is used by the Drag Object.

Objects Which Encapsulate The DynLayer

Note: As of the June 23 update to the DynLayer you must also set the
prototype of your object to the Dynlayer's prototype in order to attach
the methods.

Perhaps the most powerful way of extending the DynLayer is to , is to
make an object encapsulate the DynLayer, in other words to import all
the functionality of the DynLayer into that object.

Be aware, this is not the same thing as the above section. The above
section makes the DynLayer a property of an object. Encapsulation means
that this object actually becomes a DynLayer that has it's own set of
properties and methods.

To encapsulate the DynLayer, you assign the DynLayer as a method of the
object, and immediately call that method, and at the end make your
object have the same prototype as the DynLayer. What that does is attach
all the methods of the DynLayer to your Object.

myobject = new MyObject('myObjectDiv',null)

function MyObject(id,nestref) {
this.dynlayer = DynLayer
this.dynlayer(id,nestref)

}

MyObject.prototype = DynLayer.prototype

77

What this does is assigns all the properties and methods of the DynLayer
to this object. It is in fact a DynLayer itself because you work with it
in the same manner...

myobject.hide() myobject.moveBy(10,10) etc.

So what advantage does this have? Well this is the ultimate way of
extending the DynLayer because you can add much more functionality to
this object. This technique is the ideal way to make a back-end to a
DHTML game, where you need many types of objects that do different
tasks, yet they all need to control layers like the Dynlayer does.

DynLayer Extensions [Common]

These are commonly used additions that you may want to use. Note: these
examples are shown for a DynLayer that is named 'mylayer' but they will
work for all DynLayers of any name.

When you want to use these functions all you have to do is include the
dynlayer-common.js file after the dynlayer file:

<SCRIPT LANGUAGE="JavaScript" SRC="dynlayer.js"></SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="dynlayer-common.js"></SCRIPT>

 External File Load - load()

This method is based on the External Source Files lesson.

Usage of the load() method:

mylayer.load('myfile.html',fn)

The fn parameter is optional, it's used to execute some other function
or statment when the external file has been fully loaded into the page.

In the main HTML document you must have an hidden IFrame named
"bufferFrame", this is used to copy the contents of the external file
into the layer.

<IFRAME STYLE="display:none" NAME="bufferFrame"></IFRAME>

The external html file must call the DynLayer's loadFinish() method.
Since in IE, the main document is in a different frame, we must call it
as "parent". Fortunately this is simultaneously compatible for Netscape
because in Netscape it is all the same document, and therefore in that
case "parent" is synonymous with "document".

<BODY onLoad="parent.mylayer.loadFinish()">

Warnings: This method will not work "as-is" if these these files are all
to be contained within another frameset. In that case you'd need to send
an additional parameter for the name of the frame instead of "parent".

78

Nor will this work if you want to load multiple files simultaneously
into separate layers. This function assumes there's only one IFrame, and
hence only one file in a buffer-zone. If you wanted multiple files to be
buffered like this you'd have to have separate IFrames, and yet another
parameter to determine which frame to take the contents from.

Background Color - setbg()

Simply sets the background color of the layer. Watch out though, you
usually have to have the layer clipped, and you'll sometimes run into
problems with text that's contained within the layer. I'll leave you to
encounter all the "fun" with this function :)

Usage of the setbg() Method:

mylayer.setbg('#ff0000')

Change Image - img()

This one-line method can be used instead of the changeImage() function
so that you don't have to worry about nested references:

Usage of the img() Method:

myImgObject = new Image() myImgObject.src = 'myimg-new.gif'

mylayer.img('myImg','myImgObject')

// image must have a NAME assigned, index values won't work between both
browsers
<div id="mylayerDiv"></div>

Get Relative X Location - getRelativeX()

This function can be used to find the actual left location of the layer
(relative to the document). This only has to be used when you've
positioned your layer relatively

In order to set your CSS to make a relatively positioned layer you can
use either of the following:

#mylayer {position:absolute;} // no left or top defined

css('mylayerDiv',null,null) // in css() function null,null for x,y means
relative positioning

Then to find the actual left location use the getRelativeX() method:

var x = mylayer.getRelativeX()

Get Relative Y Location - getRelativeY()

Same as the above but for the top location:

79

var y = mylayer.getRelativeY()

Get Content Height - getContentHeight()

When you don't specify a height in your CSS, you can still obtain what
the actual height of the contents of that layer is by using the
getContentHeight() method. Note this uses the same tactic as shown in
the Scrolling Concepts lesson, however that lesson does the true call
for this value explicitly.

var h = mylayer.getContentHeight()

Get Content Width - getContentWidth()

Same as above but for the width:

var w = mylayer.getContentWidth()

Wipe Methods

The wipe methods are animated versions of the clip methods (as slide is
to the move methods).

When you want to use these functions all you have to do is include the
dynlayer-wipe.js file after the dynlayer file:

<SCRIPT LANGUAGE="JavaScript" SRC="dynlayer.js"></SCRIPT> <SCRIPT
LANGUAGE="JavaScript" SRC="dynlayer-wipe.js"></SCRIPT>

A change in IE 5.0 causes clipping to be a bit of pain. What I recommend
is before you do any wipes, reclip your layer using the clipTo()
function - just use your initial CSS clip values.

objectName.clipTo(t,r,b,l) // use your CSS values // then do your wipe

The wipeTo() Method:

The wipeTo() method will wipe (clip incrementally) the DynLayer's edges
from their current value to specific new value. It can do this for any
single edge, or multiple edges at the same time.

objectName.wipeBy(endt,endr,endb,endl,num,speed,fn)

Where:
endt - final clip top value
endr - final clip right value
endb - final clip bottom value
endl - final clip left value num - the total number of steps in the wipe sequence
 speed - speed of repetition in milliseconds
fn - (optional) function or statement to execute when the wipe is complete

For any of the edges which you do not wish to be clipped, pass null for

80

it's value.

Examples:

To wipe the DynLayer's top edge to 0, right to 100, bottom to 100, and
left to 0 (making a square box 100x100), in 10 steps, at 30 milliseconds
per step:

mylayer.wipeTo(0,100,100,0,10,30)

To wipe only the right edge to 100:

mylayer.wipeTo(null,100,null,null,10,30)

The wipeBy() Method:

Again the wipeBy() is the same as the wipeTo() except the edges are
shifted a given number of pixels:

objectName.wipeBy(distt,distr,distb,distl,num,speed,fn)

Where:
distt - clip top increment
distr - clip right increment
distb - clip bottom increment
distl - clip left increment
num - the total number of steps in the wipe sequence
speed - speed of repetition in milliseconds
fn - (optional) function or statement to execute when the
wipe is complete

For any of the edges that you do not wish to be clipped pass 0 for it's
value.

Examples:

Wipe all edges "outward" by 20 pixels:

mylayer.clipBy(-20,20,20,-20,5,30)

Wipe all edges "inward" by 20 pixels:

mylayer.clipBy(20,-20,-20,20,5,30)

Wipe the right edge outward by 100 pixels:

mylayer.clipBy(0,100,0,0,5,30)

When working with the wipe methods you have to keep your orientation
correct. Remember how positive and negative values will effect each of
the edges:

Edge Positive Increment Negative Increment
left subtracts from the edge adds more to the edge

81

right adds more to the edge subtracts from the edge
top subtracts from the edge adds more to the edge
bottom adds more to the edge subtracts from the edge

Glide Methods

The Glide methods are almost the same as the Slide Methods except they
use a different formula for moving the layer. The Slide methods are
simple straight-line animations, whereas the Glide methods use
trigonometric math to create a subtle acceleration or deceleration
effect. The result is some very slick looking animations.

As with the Wipe methods, I've made the Glide library a separate
javascript file, dynlayer-glide.js. You must call include this file in
any code that uses the glide methods:

<SCRIPT LANGUAGE="JavaScript" SRC="dynlayer.js"></SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="dynlayer-glide.js"></SCRIPT>

The glideTo() Method:

Glides the layer to a specific co-ordinate. The parameters are almost
the same as in the slideTo() method:

objectName.glideTo(startSpeed,endSpeed,endx,endy,angleinc,speed,fn)

Where
startSpeed - "slow" to begin slowly (acceleration), "fast" to begin fast (deceleration)
endSpeed - "slow" to end slowly (decelaration), "fast" to end fast (acceleration)
endx - final x-coordinate
endy - final y-coordinate
angleinc - the angle incrementation (read below)
speed - speed of repetition in milliseconds
fn - (optional) function or statement to execute when complete

The angleinc parameter is probably the only one which isn't obvious. The
glide methods use a Sine wave as the basis for the acceleration, and the
angleinc simply determines how many degrees to jump each time. The
bigger the angleinc, the bigger the jumps it will make. So it is similar
to the inc value in the Slide methods - usually a value from 5 to 10 is
good to use.

Example: glides to (50,50), starting slow, ending slow, at 10 degrees,
and 20 milliseconds per interval.

mylayer.glideTo("slow","slow",50,50,10,20)

The glideBy() Method:

Same as all the others, glideBy() shifts the location by a given number
of coordinates:

82

objectName.glideBy(startSpeed,endSpeed,distx,disty,angleinc,speed,fn)

Where distx and disty, are now the amount it will shift by.

Geometric Objects

Note: I'm told there's a few bugs in these, so use at your own risk :)

The Geometric Objects provide a solution for doing animation along a path of a
geometric shape. They could be used in demos and games if need be. They are built
as add-on objects to the DynLayer. For example, any DynLayer that you have can
also have a geometric object added on to it.

Circle Object

The Circle Object will slide a layer in a perfect circle.

Initialization:

The Circle Object is an addon object to the DynLayer. You must make a
new property onto the DynLayer and make that the Circle Object:

objectName.circle = new Circle("objectName","circle")

Example:

mylayer = new DynLayer("mylayerDiv")
mylayer.circle = new Circle("mylayer","circle")

You must pass the name of the DynLayer and the name of the new circle
object (which would usually be "circle") to the Circle Object. These 2
pieces of information are needed in order for the circle object to
access the DynLayer.

The play() Method:

The play() method begins the slide along a circular path. You must pass
information to the play() method that define the shape and properties of
the circle:

objectName.circle.play(radius,angleinc,angle,endangle,speed,fn)

Where:

83

radius - radius of circle
angleinc - angle incrementation
angle - starting angle
endangle - ending angle
speed - speed of repetition
fn - (optional) function or statement to execute when complete

Notes: to rotate counter-clockwise use a negative angleinc value, for
clockwise use a positive value If you want the circle to keep looping
then pass null for the endangle value.

Examples:

A circle, radius 100, increment 5 degrees (clockwise), starting at 0
degrees, ending at 90 degrees, at 20 milliseconds per repetion:

mylayer.circle.play(100,5,0,90,20)

The same except it loops:

mylayer.circle.play(100,5,0,null,20)

The pause() and stop() Methods:

The pause() method will pause the current circular path. The next time a
play() method is called it will continue along the same circular path:

objectName.circle.pause()

The stop() method will stop the current circular motion. The next time a
play() method is called it will slide along a new circular path.

objectName.circle.stop()

Hover Object

The Hover Object will hover a layer in a straight-line.

Initialization:

objectName.hover = new Hover("objectName","hover")

Example:

84

mylayer = new DynLayer("mylayerDiv")
mylayer.hover = new Hover("mylayer","hover")

The play() Method:

The play() method begins the hover motion:

objectName.hover.play(amplitude,angleinc,angle,cycles,orientation,speed,
fn)

Where:
amplitude - the amplitude of the hover motion
angleinc - angle incremention
angle - starting angle
cycles - the number of cycles to move before stopping
orientation - 'v' for vertical, 'h' for horizontal
speed - speed of repetition
fn - (optional) function or statement to execute when complete

Notes: If you want the hover to keep looping then pass null for the
cycles value.

Examples:

mylayer.hover.play(60,8,0,1,'v',10)

The pause() and stop() Methods:

Work the same as in the circle() method.

Sine Wave Object

The SineWave Object will slide the layer along a sine wave path.

Initialization:

objectName.sinewave = new SineWave("objectName","sinewave")

Example:

mylayer = new DynLayer("mylayerDiv")
mylayer.sinewave = new SineWave("mylayer","sinewave")

The play() Method:

85

The play() method begins the sine wave:

objectName.sinewave.play(amplitude,wavelength,angleinc,angle,cycles,
direction,speed,fn)

Where:
amplitude - the amplitude of the wave
wavelength - length of one wave
angleinc - angle incremention
angle - starting angle
cycles - the number of cycles
direction - use 1 for right, -1 for left
speed - speed of repetition
fn - (optional) function or statement to execute when complete

Notes:
If you want the sinewave to keep looping then pass null for the cycles value.

Examples:

mylayer.sinewave.play(60,200,15,0,2,1,20)

The pause() and stop() Methods:

Work the same as in the circle() method.

Parabola Object

The Parabola Object will slide the layer along a parabolic path.

Initialization:

objectName.parabola = new Parabola("objectName","parabola")

Example:

mylayer = new DynLayer("mylayerDiv")
mylayer.parabola = new Parabola("mylayer","parabola")

The play() Method:

The play() method begins the parabola:

objectName.parabola.play(type,distx,disty,xinc,speed,fn)

Where:
type - 1 is a dropping parabola, 2 is an arcing parabola
distx - horizontal distance
disty - vertical distance
xinc - the number of pixels to move horizontally each repetition
speed - speed of repetition
fn - (optional) function or statement to execute when complete

Examples:

86

mylayer.parabola.play(1,200,200,5,20)

The stop() Methods:

Work the same as in the circle() method. I didn't bother with a pause
method cause I can't see it being useful.

objectName.sinewave.stop()

Gif Animation

When it comes to making dynamic web pages and animations, using animated
GIF's would seem to help things. Unfortunately, animated GIF's have no
built in controls - you can't start, stop, or pause the animation on
command. Although it is possible to mix animated GIF's and non-animated
GIF's to mimic the effect, it really doesn't work that well. This makes
them unsuitable when trying to do anything complex with them. That is
why I made my own Gif Animation Object (GifAnim). It is a piece of code
which gives you the kind of control that is necessary for any type of
gif animation sequence you can think of.

Although the Gif Animation object is structured similarly to the Dynamic
Layer Object, it is an independent object with it's own set of methods.
Most likely however, you'll want to mix the 2 objects when creating an
animation sequence. The 2 are totally compatible so don't worry about
that.

Preloading an Image Series

The GifAnim Object requires that you have a series of preloaded image
objects already created that are named something like image0, image1,
image2 etc. where 0 is the first frame of the animation, 1 is the second
and so on.

I'm going to use the following images for my example:

num0.gif
num1.gif
num2.gif
num3.gif
num4.gif
num5.gif

To preload this Image Series I can use the preload function from the
previous lesson.

function preload(imgObj,imgSrc) {
 eval(imgObj+' = new Image()')
 eval(imgObj+'.src = "'+imgSrc+'"')
 }
preload('num0','num0.gif')
preload('num1','num1.gif')

87

preload('num2','num2.gif')
preload('num3','num3.gif')
preload('num4','num4.gif')
preload('num5','num5.gif')

But notice my preload() call is repetitive - I can do the same thing a
loop:

for (var i=0;i<=5;i++) preload('num'+i,'num'+i+'.gif')

That way it can be used for any number of images by changing the for
loop arguments.

Whatever is the consistant name in the series is the Image Series name -
in my case it would be "num" because each image object name starts with
num.

Remember you initially have to show one of the images and define the
image name, this is what I'll be using:

<DIV ID="numDiv"> <IMG NAME="numImg" SRC="num0.gif" WIDTH=50 HEIGHT=50
BORDER=0> </DIV>

Initializing GifAnim Objects

To initialize a GifAnim object, you need to define 5 things:

layer - the layer the image is inside
imgName - the name of the image (in the IMG tag)
imgSeries - the name of Image Series
end - the number of the last frame in the animation
speed - the speed of repetition in milliseconds
startFrame - (optional) the number of which frame to start on (only needed if it starts
on a frame other than 0)

The general format for initialization is:

objectName = new GifAnim(layer,imgName,imgSeries,end,speed,startFrame)

To define my GifAnim object I'll using the object name numImgAnim, so to
initialize that animation I'd use:

numImgAnim = new GifAnim('numDiv','numImg','num',5,200)

If for some reason I wanted the animation to begin on the 3rd frame
(image num2.gif) I'd instead use:

numImgAnim = new GifAnim('numDiv','numImg','num',5,2)

And remember the first image displayed would have to be num2.gif.

Using the GifAnim Methods

play() Method:

88

The play() method begins the animation. It has the following arguments
(in bold is the default):

loop - true/false - whether the animation is to loop or only play once
reset - true/false - whether the animation is to reset to the first
frame when complete fn - function or statement to execute when complete

These arguments are optional, if you don't specify any of them:

objectName.play()

it doesn't loop, doesn't reset, and does nothing when complete. But you
can assign the ones you want:

objectName.play(true) objectName.play(true,false)
objectName.play(false,true,'alert(\'done\')') // alert(\'done\') can be
replaced with anything

stop() Method:

The stop() method simply stops, or more accurately pauses, the
animation:

objectName.stop()

Depending on the arguments in the play() method it will do different
things when it is stopped. Like if the reset argument in the play()
method is true, it will return to the first frame. If reset was false,
the next time you start the animation it will continue where it left
off. And if fn was defined it'll evaluate it. If it was a looping
animation, the fn will only evaluate after it is stopped.

goToFrame() Method:

The goToFrame() method brings the animation to whichever frame you want.

objectName.goToFrame(index)

Where index is the index number of the image Series - 0 is the first
image in the series, 1 is the second and so on.

There is another method, run(), which is the logic behind the GifAnim
object, but you should never have to call that method because it doesn't
do any error checking to make sure that multiple instances of an
animation get executed.

Path Animation [The Path Object]

Path Animation Concepts:

From a programming point of view, doing animation using a path or
timeline is sort of like cheating. All you do is define a path for the

89

layer to follow, and it just loops through each point by just moving it
there rather than calculating where to move it. This has some big
advantages because it takes little CPU time (so they go really fast) and
you can move the layer in any way you can think of. The disadvantage
though, is that you cannot easily change the path like you can a
calculative animation. If you need to change it, you have to go back and
change all the points in your path. However, with that said, using a
path is still a decent way of making animation.

The basic technique for path animation is easy to understand. Once you
have all the co-ordinates of where to move the layer, you just need a
function to loop through them and move the layer to those points. For
this purpose I've written a Path Object which will take care of this for
you. You just have to add the object to your DynLayers and use the
appropriate methods.

The only problem then is to get your coordinates for your path. There
are several commercial products that will do this for you such as
Macromedia Dreamweaver or mBed Interactor. These pieces of software will
auto-generate all code for you and require their own gigantic library
files. And if you want to edit the JavaScript code by yourself you'll
have to invest quite a bit of time to fiqure out exactly what it going
on. If all you want to do is make a simple path animation in a small
demo, then paying a couple of hundred dollars for it seems a little
extreme. This is why I've designed my own little tool, called DuoPath,
which a) doesn't cost anything, b) makes it easy to get all the
co-ordinates, and c) lets you do all the coding so you understand what's
going on and can easily change it to your needs. The next lesson will
show how to use DuoPath, so I'll just continue on assuming that we've
already created our path and have all the co-ordinates ready to go.

Here's all the coordinates for a path that I made with DuoPath:

x-coords:
101,105,113,122,131,140,149,156,157,156,155,157,163,172,181,188,196,203,
208,215,221,227,234,243,252,261,270,278,287,296,303,310,315,319,321,322,322,322
,322,323,328,335,345,355,368,377,385,390,392,393,394,391,387,381,377,376,376,37
8,382,386,391,398,406,414,424,434,442,453,461,468,471,474,475,476,476,
475,474,473,472,472,476,481,488,498,508,515,523,529,536,539,542,542,541,539,535
,529,523,517,514,513,513,520,530,540,552,564,574,579,581,580,576,567,555,540,52
1,501,479,459,441,422,404,384,366,349,330,310,291,272,254,238,222,206,188,172,1
57,141,128,113,102,92,82,72,63,55,48,42,36,32,29,27,29,32,39,
48,59,67,74,81,87,91,97

y-coords:
285,271,255,242,230,225,225,233,242,253,265,275,281,284,280,269,256,239,224208,
194,181,168,154,143,135,129,126,124,125,127,130,135,140,149,161,174,192,208,229
,250,269,281,286,284,277,269,259,248,237,222,202,183,164,147,133,120,108,99,92,
86,81,78,76,77,82,90,100,116,136,157,177,200,225,249,270,289,306,323,341,354,36
5,371,376,376,374,368,361,351,340,324,309,295,281,269,257,245,231,218,202,185,1
70,159,153,148,142,133,120,106,92,80,69,59,50,44,40,37,35,34,34,34,36,37,39,42,46
,50,54,60,67,76,84,95,105,116,128,140,153,166,176,187,200,212,224,237,250,264,27
9,295,310,326,341,351,357,355,350,342,331, 320,310,299

90

As you see there's about a million of them. But it doesn't really matter
how many points there are because remember path animation takes no CPU
time, so making a lot of points is no problem. Each set of co-ordinates
represent one point in the path. The first x value and the first y value
make up the first point and so on. By assinging these numbers to an
array we will be able to access any single set by using their indexes:

path1x = new
Array(101,105,113,122,131,140,149,156,157,156,155,157,163,172,181,188,
196,203,208,215,221,227,234,243,252,261,270,278,287,296,303,310,315,319,321,322
,322,322,322,323,328,335,345,355,368,377,385,390,392,393,394,391,387,381,377,37
6,376,378,382,386,391,398,406,414,424,434,442,453,461,468,471,474,475,476,476,4
75,474,473,472,472,476,481,488,498,508,515,523,529,536,539,542,542,
541,539,535,529,523,517,514,513,513,520,530,540,552,564,574,579,581,580,576,567
,555,540,521,501,479,459,441,422,404,384,366,349,330,310,291,272,254,238,222,20
6,188,172,157,141,128,113,102,92,82,72,63,55,48,42,36,32,29,27,29,32,
39,48,59,67,74,81,87,91,97)

path1y = new
Array(285,271,255,242,230,225,225,233,242,253,265,275,281,284,280,269,
256,239,224,208,194,181,168,154,143,135,129,126,124,125,127,130,135,140,149,161
,174,192,208,229,250,269,281,286,284,277,269,259,248,237,222,202,183,164147,133
,120,108,99,92,86,81,78,76,77,82,90,100,116,136,157,177,200,225,249,270,289,306,
323,341,354,365,371,376,376,374,368,361,351,340,324,309,295,281,
269,257,245,231,218,202,185,170,159,153,148,142,133,120,106,92,80,69,59,50,44,4
0,37,35,34,34,34,36,37,39,42,46,50,54,60,67,76,84,95,105,116,128,140,153,166,176,
187,200,212,224,237,250,264,279,295,310,326,341,351,357,355,350,342,
331,320,310,299)

Now if we wanted to know the 10th x value and the 10th y value, you
check value of path1x[9] and path1y[9]. The index number is always 1
minus the point we check because arrays start at zero. So path1x[9]=156
and path1y[9]=253.

With this knowledge in mind, you can apply these coordinates to the Path
Object which will allow you to turn your coordinates into a path
animation.

The Path Object

Initialization:

The Path Object is an addon object to the DynLayer. It works similarly
to the way my Geometric Objects work. It's probably best to include the
code for each of the DynLayer and the Path Object as js files:

<SCRIPT LANGUAGE="JavaScript" SRC="dynlayer.js"></SCRIPT> <SCRIPT
LANGUAGE="JavaScript" SRC="path.js"></SCRIPT>

Once you've created a DynLayer, you create the Path Object on top of it.
You have to pass the Path Object the name of the DynLayer, and the name
of the Path Object along with the path information. This is necessary so
that the Path Object can manipulate the DynLayer.

91

objectName.pathName = new Path(dynlayer,name,arrayX,arrayY)

Where:
dynlayer - name of the DynLayer
name - name of the path (in quotes)
arrayX - array of the x-coordinates
arrayY - array of the y-coordinates

Example:

mylayer = new DynLayer("mylayerDiv")
mylayer.path1 = new Path(mylayer,'path1',
new Array(0,10,20,30),
new Array(0,10,20,30))

Optionally you could predifine the arrays and just send their names for
the arrayX and arrayY values. Once the Path Object is initialized, the
parameters become properties of the DynLayer/Path Object and can be
changed at any time if need be (ie. mylayer.path1.arrayX = new
Array(5,10,15,20)).

The play() Method:

Begins the animation.

objectName.pathName.play(loop,speed,fn)

Where:
loop - boolean value determining whether to loop the animation
speed - speed of repetition in milliseconds
fn - function or statement to execute when complete

All the parameters of the play() method are optional, if you do not
specify them it will default to play(false,30,null)

Example:

mylayer.path1.play(true,50)

The pause() and stop() Methods:

Self-explanitory:

objectName.pathName.pause() or
objectName.pathName.stop()

Using DuoPath 1.12

DuoPath is a freeware JavaScript application for making DHTML path
animation for Netscape 4.0 and Internet Explorer 4.0. DuoPath is
intended to be used along with the technique shown in the Path Animation

92

lesson - it'll explain the concepts of how DuoPath can be used for your
own purposes.

First of all, launch DuoPath and follow this lesson and switch between
the windows to understand what I'm talking about.

Launch DuoPath 1.12 Warning: DuoPath will take a little while to
initialize so don't be alarmed if your browser seems to do nothing for
10 seconds or so - just be patient and it should load up eventually.
Although DuoPath does work in Internet Explorer 4.0, I highly recommend
using Netscape 4.0 because it's much faster.

DuoPath is included along with the tutorial when you download it.

Overview of New Features

Version 1.12: Oct 15. 1999

Again updated the output, now requires you to manually include the
dynlayer.js and path.js files from the DynAPI

Version 1.11:

Updated the output of DuoPath to coincide with my updated DynLayer and
Path Objects.

Version 1.1:

DuoPath 1.1 is basically the same as 1.0 but with a few enhacements:

• Curve Mode - A very powerful set of tools to create smooth curved paths. All you
do is set a few control points and DuoPath will draw in a smooth curve based on
those points.

• Full Drag and Drop - The "move" tools are now full drag and drop instead of double
click as in version 1.0

• Updated Output - When you generate the HTML DuoPath will now use the updated
path scripts that are documented in the Path Animation lesson.

How to Use DuoPath

I think DuoPath is simple enough to use that you'll understand how to
use it almost immediately. The basic idea is you click around the screen
plotting new points for your path. Once you're done you can generate the
HTML to create a simple demo using your path. I'll do a quick summary of
how to use the features in case something seems a little odd.

Edit Mode: - controls the points in your path

New - inserts a new point to the path
Move - moves a single point to a new location
Move All - moves all the points to a new location
Erase - erases a single point anywhere in the path
Erase Last - erases the last point in the path

93

Insert - inserts a single point in the middle of the path
Line - creates a straight line of points betwen 2 locations
Circle - creates a circle/oval starting at the last point
Parabola - crates a parabola starting at the last point
Curve - goes into curve mode
Info - retrieves the number, and x and y location of a point

Notes:

Inserting a point is not the same as making a new point. A new point is
appended to the end of the path. Inserting a point puts another point
between 2 points already in the path. You first have to click the point
that comes after the point you are inserting. This will attach a point
to the cursor, then you click again to drop that point into the path.

For the line mode, first click where you want the line to begin. Then
click again for where you want the line to end. A dialog will pop up and
ask how many pixels apart the points will be spaced, then it'll insert
them for you.

If you're not going to take my advice and use Netscape, then you will
have to be aware that in IE when you click on the scrollbars it will
insert a point if you are in "New" or "Line" mode. I guess IE thinks
that the scrollbars are part of the document for some reason. To avoid
putting points where you don't want them just go into one of the other
modes before scrolling.

Curve Mode:

Curve mode allows you to draw a perfectly smooth curve of points based
on just a few control points which you must define.

The curve tools:

new point - new curve point
move point - move curve point
erase point - erase curve point
move curve - move all curve points
Path Points - sets the number of path points for each curve point (the distribution)
erase curve - erases the whole curve
new curve - finalizes the current curve and starts a new one

You work with curve points just as you would the normal path points.
However, once you put down 4 curve points DuoPath will draw in a series
of path points based on where your curve points are. As you continue to
add more curve points it will redraw the curve accordingly. The curve
points (in purple) are used to influence how the curve bends. You can
move the curve points and reshape the curve to your liking.

The curve tools should be self-explanitory except for "Path Points" -
that's to determine how many actual path points get put into your curve.
A higher number means there will be more points in the curve and
therefore the animation will move smoother and slower.

94

Here's a "before" shot of some points labeled in the order they were
clicked:

The first 3 points won't do anything, but once the forth one is down
it'll draw the curve for you:

By positioning the curve points closer or farther apart you can create
an acceleration effect. The picture below shows a path that will start
off slow and speed up as it swooshes away:

Special Buttons

Preview - allows you to preview the animation to make sure if the locations of the
 points are correct and the speed is suitable
Generate - generates an HTML page with all the coding already done for you
Load Source - loads an HTML page into the workspace (Netscape only)
Load Path - allows you to insert a path that you created in the past
New Path - erases all the points

Inputing Points:

This is a way to work on a path that you created earlier, and want to
edit some more. 2 dialog boxes will appear, the first asking for the x
values, and the second for the y values. You have to manually cut and
paste the numbers from your previous path into these dialogs. To

95

demonstrate this feature just copy the first line of numbers below
(including the commas) by putting your cursor in front of the first
number. Then hold shift and press the END key. Then copy the numbers
(Ctrl-C, depending on your platform). Then switch to DuoPath and in the
Input Points dialog paste the numbers in (Ctrl-V). Then hit "Okay" and
do the same for the y values (the second row of numbers). DuoPath will
then draw out all the points and you can continue editing them.

Preview

The preview mode is pretty cool. You can instantly see what your
animation is going to look like by playing the animation right inside
DuoPath. You can change characteristics of the animation - whether it
loops or not, or change the speed of repetition.

Generate HTML

With a simple click and a few options to set you can have all the path
animation code generated for you on the fly. It has options for setting
the speed, the name of the object and so on. The code is basically the
same as shown in the Path Animation lesson but can also contain links
for playing, pausing, and stopping the animation - just as in DuoPath's
preview mode. Remember that by no means you have to use this code, you
can still just take the co-ordinates themselves and do whatever else you
want with them.

Other Tips:

Don't hesitate to make tons and tons of points. It makes the animation
smoother and DuoPath is designed so that there's no limit to how many
points you can have. Every 100 points you lay down it'll refresh itself
to hold more - don't worry, all your points will remain in tact.

Also if DuoPath ever messes up - like a error occurs or something - you
can at anytime reload the workarea frame and it should correct the
problem.

DynAPI Mouse Events

Just as you can capture keyboard events, you can capture mouse events
like onMouseDown, onMouseUp, and onMouseMove - there are other if you
want to read up on them but these are the most important ones. For each
of these events, you can obtain the location of the mouse and use those
coordinates to move a layer.

The first part will explain the basics of mouse events in a
cross-browser setting, the second part will explain the mouse event
functions used for elements in the DynAPI.

Overview of Document Mouse Events:

Each of onMouseDown, onMouseUp, and onMouseMove are initialized the same
way. Here's the set up I like to use:

96

function init() {
 document.onmousedown = mouseDown
 document.onmousemove = mouseMove
 document.onmouseup = mouseUp
 if (is.ns) document.captureEvents(Event.MOUSEDOWN |
Event.MOUSEMOVE | Event.MOUSEUP)
 }

 function mouseDown(e) {
 }
 function mouseMove(e) {
 }
 function mouseUp(e) {
 }

The function names can be whatever you want, but to keep it consitant I
will always use mouseDown(e), mouseMove(e), and mouseUp(e). Netscape 4
has a different event model than IE which requires you to "capture"
events before they can be used. In IE they are always captured.

Getting the Mouse Coordinates

The "e's" in each function represent the built-in Event object for
Netscape. It is how Netscape obtainss the location of the mouse:

function mouseDown(e) {
if (is.ns) {
 var x = e.pageX var y = e.pageY
}

}

IE will ignore the e's because it uses a slightly different system for
capturing mouse events. IE has an "window.event" object which handles
all events. The window.event object contains the properties x and y
which represent the location of where the mouse event occured:

function mouseDown(e) {
if (is.ns) {
 var x = e.pageX
 var y = e.pageY
}
If (is.ie) {
var x = event.x
var y = event.y
}

}

Those values reflect where in IE's browser window the mouse event
occured - it does not necessarily reflect exactly where on the document
has been clicked. If you scroll down the window.event.y value isn't in
synch with the document, so we have to account for that discrepency
ourselves. You add the amount that the document has been scrolled by
using document.body.scrollTop.

97

var x = event.x+document.body.scrollLeft
var y = event.y+document.body.scrollTop

What I usually like to do is compact the x-y capturing with these 2
lines:

var x = (is.ns)? e.pageX : event.x+document.body.scrollLeft
var y = (is.ns)? e.pageY : event.y+document.body.scrollTop

Now when any of the events occur we can work with the x and y variables
(the current location of the mouse) and do some neat things with them.

An improvement I like to do is only allow left mouse button clicks. In
Netscape you check for e.which, and IE you check for event.button:

function mouseDown(e) {
 if ((is.ns && e.which!=1) || (is.ie && event.button!=1)) return true
 var x = (is.ns)? e.pageX : event.x+document.body.scrollLeft
 var y = (is.ns)? e.pageY : event.y+document.body.scrollTop
 }

I like to do this because the default action when right clicking your
mouse is to pop open the command menu (Back, Forward etc). This
interferes when coding mouse events, so I don't do anything when you
right click.

Return Values:

The return values in the mouse events are very important for Netscape.
When you click the mouse somewhere on a page, the document recieves the
event first (and thus the mouseDown event is triggered). Even if you are
clicking on a hyperlink the mouseDown event will be called. By returning
true in the event handler you allow other elements on the page use that
event. If you return false you stop the page from doing anything else
with that event. So for example if you were to always return false in
your mouseDown handler:

function mouseDown(e) {
return false

}

Than you would never be able to click on a hyperlink - which is
obviously not desired. Always returning true isn't the answer either
because sometimes elements on the page will interfere with what you want
to do with the mouse. Also, on MacIntosh's there is no left mouse
button. So to open the command menu you must hold down the mouse for
about a second before it pops up. This causes major problems. But by
returning false in the mouseDown handler it will stop this from
occuring.

The mouseMove event is a bit of a pain as well. On the document, the
mouseMove event is what allows you to select/highlight text on the page
(for copy/paste reasons). By returning false in the mouseMove event you

98

disable Netscape from being able to highlight the text.

So you must carefully place a return false only when you are
specifically making use of the event, all other times you return true.
Notice I return true when checking if the left mouse button was not
clicked (I let the document use the mouseDown event).

In the end, these are the mouse functions that work pretty good

function init() {
 document.onmousedown = mouseDown
 document.onmousemove = mouseMove
 document.onmouseup = mouseUp
 if (is.ns4) document.captureEvents(Event.MOUSEDOWN |
Event.MOUSEMOVE | Event.MOUSEUP)
 }

 function mouseDown(e) {
 if ((is.ns && e.which!=1) || (is.ie && event.button!=1)) return true
 var x = (is.ns)? e.pageX : event.x+document.body.scrollLeft
 var y = (is.ns)? e.pageY : event.y+document.body.scrollTop
 // your code goes here
 return true
 }
 function mouseMove(e) {
 var x = (is.ns)? e.pageX : event.x+document.body.scrollLeft
 var y = (is.ns)? e.pageY : event.y+document.body.scrollTop
 // your code goes here
 return true
 }
 function mouseUp(e) {
 var x = (is.ns)? e.pageX : event.x+document.body.scrollLeft
 var y = (is.ns)? e.pageY : event.y+document.body.scrollTop
 // your code goes here
 return true
 }

DynAPI Mouse Events

To replace the need to manually insert the above functions, I've created
a default JavaScript file that I'll be using in demos that require
document mouse events. The particular sections are the Drag object and
the Scroll2 object.

To use the DynAPI mouse events include the mouseevents.js file after the
dynlayer.js and BEFORE the drag.js and scroll2.js if you will be using
them:

<script language="JavaScript" src="../dynlayer.js"></script>
<script language="JavaScript" src="../mouseevents.js"></script>
<script language="JavaScript" src="../drag.js"></script> // if needed
<script language="JavaScript" src="../scroll2.js"></script> // if needed

99

These files will take care of retrieving the co-ordinates of the mouse,
and the handling required to operate the Scroll2 and the Drag object. To
initialize these you'll call the initMouseEvents() function in the
init():

function init() {
initMouseEvents()

}

Instead of having your own mouseDown, mouseMove, and mouseUp functions,
you can now have simpler means of obtaining mouse coordinates by
incorporating the DynMouseDown, DynMouseMove, and DynMouseUp functions:

function DynMouseDown(x,y) { // your code for mousedown return true }

function DynMouseMove(x,y) { // your code for mousemove return true }

function DynMouseUp(x,y) { // your code for mouseup return true }

These functions are optional. If the mouse events are only to be used by
a Scroll2 or the Drag, then they don't even have to be included in your
source code because the above empty default functions are already in the
MouseEvents code.

Drag and Drop Concepts

Drag and drop scripts are entirely based around the mouse events. I will
be using the DynAPI Mouse Event code, so if you haven't already, read
that lesson to know what I'm talking about. This lesson will show step
by step how to make one layer draggable. The next lesson will show how
to make any number of layers draggable with a generic Drag Object.

A drag and drop sequence is handled like so:

mouseDown - check if the mouse has click on a layer, activate the mouseMove
mouseMove - move the layer to cooincide with the location of the mouse
mouseDown - stop the mouseMove thus ending the drag sequence

Setting up the Layer:

I will be using a 50x50px layer named "square" and defining a DynLayer
to it named "dragObject"

function init() {
dragObject = new DynLayer("square")

 dragObject.dragActive = false
initMouseEvents()

}

Notice I have tacked on a dragActive property to the DynLayer. This
boolean property will represent whether the layer is currently being
dragged.

100

The DynMouseDown Handler

The first stage in the drag sequence is to check if you have clicked on
the layer or not. To do this you simply compare the x-y coordinate of
the mouse to the edges of the layer:

if (x>=dragObject.x && x<=dragObject.x+dragObject.w && y>=dragObject.y
&& y<=dragObject.y+dragObject.h)

If we have indeed clicked on a layer we will begin the actual dragging
of the layer. All that's needed in the mouseDown is to set the
dragActive flag to true:

if (x>=dragObject.x && x<=dragObject.x+dragObject.w && y>=dragObject.y
&& y<=dragObject.y+dragObject.h) {

dragObject.dragActive = true
return false

}

Notice that I have placed a return false in the block if we have clicked
on a layer. This stops Netscape from using the mouseDown event for
anything else (including a MacIntosh mouse-hold).

The full DynMouseDown handler looks like this:

function DynMouseDown(x,y) {
 if (x>=dragObject.x && x<=dragObject.x+dragObject.w &&
y>=dragObject.y && y<=dragObject.y+dragObject.h) {
 dragObject.dragActive = true
 return false
 }
 else return true
 }

The DynMouseMove Handler

The mouseDown handler on it's own won't do anything to the layer, but by
setting the dragActive flag to true we have a way of turnging the
mouseMove action on and off as we please. The mouseMove event simply
checks if the dragActive flag is true, and if so moves the layer to the
coordinates of the mouse:

function DynMouseMove(x,y) {
if (dragObject.dragActive) {

dragObject.moveTo(x,y) return false
}

else return true
}

As soon as dragActive is set to true the mouseMove function will begin
moving the layer. Again note the placement of the return false, it is
important. While we are dragging the layer around we do not want
Netscape to use the mouseMove event for anything else (such as selecting

101

text).

The DynMouseUp Handler

To end the drag sequence all you need to do is set the dragActive flag
back to false. This stops the mouseMove function from moving the layer:

function DynMouseUp(x,y) {
dragObject.dragActive = false
return true

}

In this case no return false is necessary. It doesn't matter if Netscape
handles the mouseUp event anymore because we have already stopped the
drag sequence.

Accounting for the Offset Values

You'll notice in that example that if the layer is moved directly to the
location of the layer it doesn't look right. The layer pops to the
corner regardless of where it was click on. We can account for this
situation and correct it by capturing the difference between the
location of the layer, and the coordinate of the mouse (the offset
values). This is done in the mouseDown function:

if (x>=dragObject.x && x<=dragObject.x+dragObject.w && y>=dragObject.y &&
y<=dragObject.y+dragObject.h) {
 dragObject.dragOffsetX = x-dragObject.x
 dragObject.dragOffsetY = y-dragObject.y
 dragObject.dragActive = true
 return false
 }

By tacking on the dragOffsetX and dragOffsetY properties we have
captured the offset values and can utilize them in the mouseMove handler
to move the layer accordingly:

if (dragObject.dragActive) {
 dragObject.moveTo(x-dragObject.dragOffsetX,y-dragObject.dragOffsetY)
 return false
 }

Drag Object

Revision:

I pulled the drag mouse events into a "mouseevents.js" file, and created
onDragStart(), onDragMove(), and onDragEnd() event handlers. built a
"dropping" mechanism to track when you've dropped a layer on top of
another layer (a drop target)

The Drag Object is a unified piece of code which allows you to

102

selectively make Dynamic Layers draggable with a minimal amount of
coding. All that's needed is to set up the drag.js file, initialize your
DynLayers, and then add them to the drag object.

Setting Up The Script

The Drag object is based around the DynLayer and the DynAPI Mouse
Events. You simply add DynLayers to the Drag Object to make them
draggable, and remove them from the drag object to make them static
again.

The required DynAPI scripts are:

<script language="JavaScript" src="../dynlayer.js"></script>
<script language="JavaScript" src="../mouseevents.js"></script>
<script language="JavaScript" src="../drag.js"></script>

Make sure to have the drag.js after the mouseevents.js

The Drag Object code will automatically intialize a generic "drag"
object which is the default (ie. you don't have to insert this code):

drag = new Drag()

However, being that this is an object you could create multiple drag
objects to define different groups of draggable layers.

Mouse Event Handling

The mouse event handling for the Drag Object is now taken care of by the
new DynAPI Mouse Events code. All you have to do is include the
mouseevents.js file and call the initMouseEvents() function:

function init() {
// initialize DynLayers here
initMouseEvents()

}

The mouse handling only takes care of the default "drag" object. If you
have other Drag objects you'll have to include a call to
yourdrag.mouseDown(x,y), yourdrag.mouseMove(x,y), and
yourdrag.mouseUp(x,y) into each of the DynMouseDown() Move() and Up()
functions.

The Drag Object's add() method is what you use to make your layers
draggable. The usage is pretty simple:

drag.add(dynlayer1, dynlayer2, etc...)

Where dynlayer1, dynlayer2, etc... is the names of your DynLayers. The
method will accept any number of DynLayers in a row, or you can add them
separately. As soon as they're added they will become draggable, this
can be done at any time after the page has been loaded. The following
init() function will make each of the DynLayers draggable as soon as the

103

page is finished loading:

function init() {
 // initialize DynLayers
 blue = new DynLayer("blueDiv")
 red = new DynLayer("redDiv")
 green = new DynLayer("greenDiv")
 purple = new DynLayer("purpleDiv")

 // add the draggable layers to the drag object
 drag.add(bluered,green,purple)

 initMouseEvents()
 }

initMouseEvents()

}

That's all that's necessary to get your drag and drop layers working.

Extra Functionality

remove() Method:

You can remove a DynLayer from the Drag Object, and therefore making it
no-longer draggable, by using the remove() method. It's syntax is the
same as the add() method:

drag.remove(dynlayer1, dynlayer2, etc...)

resort Property:

The resort property determines whether the layer that is being dragged
will be layered on top of all the other layers. By default, when you
click a draggable layer the Drag Object will make the z-index of that
layer higher than all the rest. This may not be what you want, so you
can turn it off by calling:

drag.resort = false

setGrab() Method:

The setGrab() method allows for only a portion of the layer to be
"grabbable", this allows for draggable toolbars, or window-like layers
(see DynWindow Object).

drag.setGrab(dynlayer,top,right,bottom,left)

This method is entirely optional, if you don't call it the entire layer
will be "grabbable"

checkWithin(x,y,left,right,top,bottom) Function:

104

The checkWithin() function can be used to check if a particular
coordinate is with a certain boundary. This function is used by the Drag
Object to determine when a layer has been clicked on. But it can also be
used for other things such as determining if you've dropped the object
onto a particular area of the page.

To use the checkWithin() function you need a test coordinate (x and y)
and you compare that to 4 other values (left,right,top,bottom) which
represent a square portion of the page:

checkWithin(x,y,left,right,top,bottom)

checkWithinLayer(x,y,lyr) Function:

Same as checkWithin() except it checks if x,y is within the drag
boundaries of the DynLayer (lyr). This can only be used for DynLayers
that are part of the Drag Object either as a drag layer or a drop target
layer.

Drag Events

If you want to "do stuff" before you drag a layer, while you're dragging
a layer, or when you're finished dragging the layer, you'll need to
implement the onDragStart, onDragMove, and onDragEnd event handlers
respectively.

drag.onDragStart = startHandler
drag.onDragMove = moveHandler
drag.onDragEnd = endEndler

In your handler functions you can use any of the properties of the drag
object to manipulate

Drop Targets

Making drop targets allow you to easily determine if your dragging layer
has been dropped on top of another. For example if you had a shopping
cart and wanted to drop an item onto the basket you'd make the layer
with the basket a drop target.

You do that with the addTarget() method:

drag.addTarget(target1,target2,target3) // target1,2,3 are DynLayers

Then to do something when a drag layer has been dropped on the target,
you must implement a onDrop event handler:

drag.onDrop = dropHandler

If you have multiple targets, you can determine which target was dropped
on with the drag.targetHit property:

function dropHandler() {

105

if (this.targetHit == target1)
alert("you hit target 1")

}
Creating and Destroying Layers

In both the browsers there is a way to add new layers to the page on the
fly (after the page is fully loaded). Again this is a situation where
the solution is completely different between the browsers. However there
is one crippling obstacle that I haven't been able to get around which
makes it impossible to use this technique to it's full potential.

Netscape:

Creating a New Layer in Netscape:

In Netscape, to add a new layer to the page you simply create a new
Layer object:

document.layers[id] = new Layer(width)

For a nested layer you must call the new Layer command like this:

document.layers[parentLayer].document.layers[childLayer] = new
Layer(width, document.layers[parentLayer])

Thanks to Bill Sager for showing me how to do that.

After the layer is created you can then assign the properties and add
the content to the layer using JavaScript:

document.layers[id] = new Layer(400) document.layers[id].left = 40
document.layers[id].top = 100 document.layers[id].height = 300
document.layers[id].bgColor = "blue" document.layers[id].visibility =
 "show" document.layers[id].document.open()
document.layers[id].document.write("This is my content")
document.layers[id].document.close() etc.

Once all this is done, you can use the layer as normal.

Removing a Layer in Netscape:

Unfortunately there is no way that I know to truely delete a Layer in
Netscape. So the closest thing we can do is simply hide the layer.

document.layers[id].visibility = "hide"

Want a challenge?

It is theorized that a solution could be created which keeps track of
which layers have been deleted (keep track of their indexes), and then
when you create new layers re-assign the indexes of deleted ones. So if
you want a challenge that no one has been able to solve yet here's your
chance! Please notify me of any solutions, even partial experimental

106

ones.

Internet Explorer

Creating a New Layer IE:

Internet Explorer's ability to work with HTML as if it were a string
allows you to add more layers as you please. I recommend this be done
using IE's insertAdjacentHTML(). If you use the innerHTML property it
will cause some unexpected results.

To add another layer (or any other HTML for that matter) to the body of
the document, you call the method in this manner:

document.body.insertAdjacentHTML(string)

Where string is a string of text or HTML that needs to be appended to
the end of the page. So to create a layer you can pass a DIV tag with
the style assign using the old inline technique if you prefer (remember
IE doesn't have problems with inline styles):

document.body.insertAdjacentHTML(' <DIV ID="layerName"
STYLE="position:aboslute; left:40; top:100;"> This is my content
</DIV>')

To create a nested layer you can apply the insertAdjacentHTML() method
to the parent layer just as you do the body of the document:

document.all[id].insertAdjacentHTML(string)

Removing a Layer in IE:

Initially I had though that the only way to delete a layer in IE was to
do string manipulation to the document.body.innerHTML property of the
page. However this creates some severe problems as "phantom" HTML
elements get introduced. Fortunately, as a few other JavaScripters (Erik
Arvidsson and Thomas Brattli) mentioned, there indeed is a pretty easy
way to delete a layer in IE. You can use a combination of innerHTML and
outterHTML on that particular layer only. It does work, and does not
cause the problem seen when using document.body.innerHTML.

To remove a layer you can do these 2 commands:

document.all[id].innerHTML = "" document.all[id].outerHTML = ""

The createLayer() and destroyLayer() Functions

createLayer(id,nestref,left,top,width,height,content,bgColor,visibility,
zIndex)

destroyLayer(id,nestref)

The usage should be obvious - id and nestref they are the same as for a
Dynlayer. The left, top, and width properties are required, the rest are

107

optional. After you create the layer you could assign DynLayers to them
and work with them that way.

CGI Communication

Although DHTML in the version 4 browsers is not specifically geared to
interact with a server-side process, using some tricks it can be
accomplished. This is particularly useful for building true applications
using DHTML. You could create a wide range of applications such as some
really nifty shopping carts, or a nice DHTML interface to a database, or
possibly even a chat room if you're inclined to put in the time to write
one. Following the guidelines I will explain here these things are all
theoretically possible.

There are few ways to accomplish the task:

Hidden Frame

It's been long known that if you hide a frame you can target your form
values to that frame, and the other page will stay loaded. You could
submit a form, and have the CGI submit back a page containing JavaScript
code that updates the other frame by rewriting layers or whatever. This
is the easy way to do it, it's pretty straight-forward, so I won't cover
it for now.

Java Client-Server Interaction (Servlet)

This would probably work very well. However you have to be using a
server that supports Servlets and it would require a fair amount of work
to accomplish. I may play around with creating a servlet and seeing if
it indeed would work. The process would be like this:

JavaScript
Use LiveConnect execute functions in the applet

Applet
applet communicates directly with the server-side java

Servlet
servlet processes request (writes files, calls database, whatever) and
then communicates back to the applet

Applet
applet sends the JavaScript the results

JavaScript
display the results from the process by writing layers

Submitting Forms to Layers

The basic technique to use to submit a form to a layer is really just a
derivative of the load external files technique. You load in external

108

files that are generated by a Perl script or equivalent server-side
process like ASP, PHP, or any number of web database languages like
ColdFusion, Domino, Oracle etc. The fun part is, you can't send any
information to the CGI by actually submitting the form (the way CGI
scripts usually work). The whole point of developing a DHTML interface
is to make the page static, but keep the information contained in it
dynamic and updatable. This means you cannot ever change the location of
the page and you must load files (containing new information generated
by the CGI) into layers contained within the static page.

To communicate with a server using a regular CGI process there is only
one solution: query strings!!!.

Your CGI script must be able to accept query strings instead of regular
form parsed values. We will use query strings to pass all the relevant
data to the CGI - I will be using a simple Perl script to accomplish
this task.

Gathering the Data

The easiest way to gather your data is through HTML Forms. But you must
realize that this is not the only way to gather data. You could create
your own GUI elements to switch widget-like images on and off or any
other crazy ideas you have. For simplicity in this example I'll just use
a simple form that asks what your favorite operating system is:

<form name="myform">
<p>My Favourite Operating System is:
<p><input type="Radio" name="os" value="win9x">Windows 95/98

<input type="Radio" name="os" value="winnt">Windows NT 3.5/4.0

<input type="Radio" name="os" value="mac">MacOS 7/8

<input type="Radio" name="os" value="linux">Linux

<input type="Radio" name="os" value="solaris">Solaris

<input type="Radio" name="os" value="freebsd">FreeBSD

<input type="Radio" name="os" value="beos">BeOS

<input type="Radio" name="os" value="handheld">Handheld (PalmOS/WinCE)

<input type="Radio" name="os" value="otherunix">Other Unix-based
<p>
<input type="button" value="Submit" onClick="submitForm()">
</form>

Notice there is not ACTION associated with the Form tag, that's a no-no.
You must create a JavaScript function of some sort to collect your data
into individual variables. In my case, I just need to know which
operating system was selected. So I created a submitForm() function to
get that value when the Submit button is clicked:

function submitForm() {
 for (var i=0;i<document.myform.os.length;i++) {
 if (document.myform.os[i].checked) {
 var os = document.myform.os[i].value
 break
 }
 }

109

 alert(os)
 }

Getting The CGI Process To Work

Before we go head first into writing a big Perl script, we better do a
little test to make sure this will in fact work. What I did was create a
"results" layer which will contain the Perl-generated external page. To
load the page I'll use the DynLayer load() method. Because the load()
method uses an IFrame called "bufferFrame" we must include that as well.
If you didn't read the DynLayer load() section yet, I recommend you do
so now to understand what I'm doing.

The CSS (auto-generated via the css() function):

writeCSS (css('resultsText',250,30)+
css('resultsDiv',250,50,200,100,'#c0c0c0'))

The Div's:

<iframe style="display:none" name="bufferFrame"></iframe>

<div id="resultsText">Results Layer:</div> <div
id="resultsDiv"></div>

In order to use the DynLayer load() method, we must have both the
dynlayer.js and the dynlayer-common.js (which contains the load
function) in the page:

<script language="JavaScript" src="../dynlayer/dynlayer.js"></script>
<script language="JavaScript"
src="../dynlayerext/dynlayer-common.js"></script>

The resultsDiv layer must be initialized (DynLayerInit() can be used)
and the load() method applied to it:

function init() {
DynLayerInit() results.load = DynLayerLoad

}

When the form is submitted, we must change the location - by using the
load() method - directly to the Perl script:

function submitForm() {
 for (var i=0;i<document.myform.os.length;i++) {
 if (document.myform.os[i].checked) {
 var os = document.myform.os[i].value
 break
 }
 }
 results.load("/cgi-bin/dynduo/cgicomm-test.pl")
 }

110

For this "test" case, the cgicomm-test.pl script can be simple, it just
writes out a simple page that does what all external files must do -
call back to the layer it's being loaded to, to complete the loading
sequence.

#!/usr/local/bin/perl

print "Content-type: text/html\n\n";
print "<html*gt;<body onLoad=\"parent.results.loadFinish()\"*gt;\n";
print "This text came from a perl script!";
print "</body*gt;</html*gt;\n";

View cgicomm2-cgitest.html [source] - to view a preliminary test of the
DHTML-to-CGI communication technique.

As you can see this process works fine, so lets finish it up...

Finalizing The Perl Script and Query Strings

For this example the Perl script doesn't really do anything except
gather the query strings (only one string actually - "os"), and then
prints out a page.

#!/usr/local/bin/perl

 # Get the query strings
 @qsets = split (/&/,$ENV{'QUERY_STRING'});
 foreach $qset (@qsets) {
 @qsetpart = split(/=/, $qset);
 $qstr{$qsetpart[0]} = $qsetpart[1];
 }

 # make a list of the full names for the OSes
 $osNames{'win9x'} = "Windows 95/98";
 $osNames{'winnt'} = "Windows NT 3.5/4.0";
 $osNames{'mac'} = "MacOS 7/8";
 $osNames{'linux'} = "Linux";
 $osNames{'solaris'} = "Solaris";
 $osNames{'freebsd'} = "FreeBSD";
 $osNames{'beos'} = "BeOS";
 $osNames{'handheld'} = "Handheld (PalmOS/WinCE)";
 $osNames{'otherunix'} = "Other Unix-based";

 # get the full name of the OS that was selected and sent as a query string 'os'
 $os = $osNames{$qstr{'os'}};

 # print the page
 print "Content-type: text/html\n\n";
 print "<html><body onLoad=\"parent.results.loadFinish()\">\n";
 print "This text came from a perl script!";
 print "<p>You have chosen:
$os\n";
 print "</body></html>\n";

111

To test this script out you could point the browser to the script with a
query string manually attached: /cgi-bin/dynduo/cgicomm.pl?os=win9x.
It'll cause a JavaScript error when it tries to find the "results"
layer, but you can see the script works fine otherwise.

There's only one small change we need to make in the JavaScript to
finish everything up. We need to send the "os" variable to to the perl
script when you submit the form:

if (os) results.load("/cgi-bin/dynduo/cgicomm.pl?os="+os)

And Voila! We have DHTML and JavaScript working together with Perl!

As you can see it's really not that difficult. This general idea could
be extrapolated significantly to open up a wide range of possibilities.
I will be doing some more work on this, I may try to build a DHTML
interface to my Forum. And I'll expand on this technique further in the
future.

Audio Controls (for Netscape 3,4, and IE 4)

Warning: If you are using IE4 or IE5, and you have installed Microsoft
Media Player, the following code won't work. This is because Microsoft
was kind enough to break the compatibility of IE's multimedia controls
(on purpose perhaps?). I haven't bothered to comb through the latest IE
documentation for how they now want people to do audio controls. Also
beware, some later versions of Netscape seem to screw up when checking
for the LiveConnect plugin - it's there, but for some reason you still
get errors. I'll eventually get back to this aspect of JavaScript and
clean everything up. Anyone want to help?

Controlling audio is quite simple once you know what the commands are.
The easiest way I've found to do it is by using the EMBED tag to load
the audio file (wav, au, midi etc.). Then using the appropriate commands
you can either play or stop the file.

So first, here's the embed tag (it's pretty self-explanitory):

<EMBED NAME="myaudio" SRC="myaudio.mid" LOOP=FALSE AUTOSTART=FALSE
HIDDEN=TRUE MASTERSOUND>

The code to make Netscape 3 or Netscape 4 play this file is:

document.myaudio.play()

If you want the file to loop, you have to use .play(true)

And the code for Internet Explorer 4 is very similar:

document.myaudio.run()

In IE the file will loop depending on the LOOP property in the EMBED
tag.

112

Finally, the code to stop playing the file is the same across all the
browsers:

document.myaudio.stop()

Audio Error Checking

There's a whole slew of things to consider when implementing audio into
your page. Not all versions of Netscape 3 and 4 have audio capabilities,
and they'll give an error when it reads the EMBED tag. And if the files
haven't loaded yet and you try to play them, they'll give some other
error. And if you use IE 4 and try to start a file while another one is
playing or if you execute an audio command from an HREF tag it won't do
anything,... blah, blah, blah.

Generated Layers

Generating layers is an easy concept to understand and it has a lot of
applications, especially when developing an entire websites with Dynamic
HTML, or getting into more complex DHTML. Using document.write()
commands you can generate your CSS and DIV tags according to whatever
specifications you want.

A lot of possibilities are opened when you take this approach:

• You could make a layer appear at a random location
• generate possibly hundreds of layers in an ordered fashion
• center layers, or align them according to the browser window dimensions
• make widget objects that generate CSS and DIV's on their own

I'll show how you can accomplish each of these tasks by following a few
simple guidelines.

The Basics

To generate a layer is very straight-forward. Just use the
document.write() command to script the CSS and DIV's. The only trick is
that you have to document.write the <STYLE> tag along with the CSS. If
you don't, things tend not to render properly in Netscape. I've found
the following set-up to be the most problem-free:

var str = '<STYLE TYPE="text/css">\n'+
'#mylayerDiv {position:absolute; left:50; top:70; width:80; height:20;
clip:rect(0,80,20,0); background-color:yellow; layer-background-color:yellow;}\n'+
'</STYLE>'
 document.write(str)

Usually there's no problems in IE, but I've found a few problems with
Netscape that you'll want to avoid to save yourself a lot of headache.

• write the CSS in a script in either the head of the document, or immediately
following the BODY tag.

113

• avoid writing a STYLE tag inside another layer, this only works if the layer is going
to be relatively positioned, I won't bother covering this but feel free to
experiment.

• It's a lot cleaner and more efficient to write all of your CSS at the same time by
creating a string of the text.

• ABSOLUTELY DO NOT put a corresponding \n at the end of </STYLE>. An early
Netscape (4.0-4.05) bug associated when you do this had me baffled for months,
it took me forever to figure it out. I don't know why but if you stick a \n at the
end of a STYLE tag and document.write() it within a page with lots of text, you
get a line break somewhere in the middle of the page. If you're a regular reader of
this website you may have noticed this.

Stick to those guidelines and you'll be okay.

Often its not necessary to SCRIPT the writing of the DIV's. You'll only
need to do this if you're planning on making a widget of some sort, or
write many DIV's that are alike in some manner. It works as expected:

<SCRIPT LANGUAGE="JavaScript">
str = '<DIV ID="mylayerDiv">my layer</DIV>'
document.write(str)
</SCRIPT>

Always keep the DIV's in the BODY of the document.

So a basic template to follow looks like this:

<HTML>
<HEAD>
<TITLE>The Dynamic Duo - Generated Layers Demo [Simple]</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!--
 var str = '<STYLE TYPE="text/css">\n'+
 '#mylayerDiv {position:absolute; left:50; top:70; width:100; height:20;
clip:rect(0,100,20,0); background-color:yellow; layer-background-color:yellow;}\n'+
 '</STYLE>'
 document.write(str)
 //-->
 </SCRIPT>
 </HEAD>

 <BODY BGCOLOR="#FFFFFF">

 <SCRIPT LANGUAGE="JavaScript">
 <!--

 var str = '<DIV ID="mylayerDiv">my layer</DIV>'
 document.write(str)

 //-->
 </SCRIPT>

 </BODY>

114

 </HTML>

The css() Function

Something I've been doing to make it nicer to generate CSS is to use a
central function which returns the CSS syntax for you. This way you
avoid having to rewrite the left, top, width, height etc. for each
layer. This makes your code cleaner and will save some file size if
you're planning on doing a lot of this. In fact, I've found using the
following 2 functions so nice that I tend not to manually write the CSS
anymore at all. Because of their immense usefulness, I have included
these in my DynLayer as well, so you only need to include the css
functions if you are not using the DynLayer:

CSS Functions Source Code:

css.js

The syntax for calling the css() function is:

css(id,left,top,width,height,color,vis,z,other)

The css() function should be pretty self-explanitory, except for the
following...

The most notable is how I worked with the height and clip values. 99% of
the time you want to set the height of your layer, you also want to clip
the layer to that same value. For example, if you want to make a colored
square, you'd have the width and the height the same as the clip right
and clip bottom values. On the other hand, if you are just placing some
text or an image you don't need to clip it and you don't have to set the
height either. So what I've done with the CSS function is when you set
the height, it also sets the clip values to (0,width,height,0) - which
is the most common situation.

However, in the cases where you want the clip values to be different
than the width and height, you may use the other property and send your
own 'clip:rect()' CSS. When you do this it will write your clip CSS
instead of making it's own based on the width and height.

You can also make the layer positioned relatively by sending null for
both the left and top values. In fact any of the values you don't want,
just send a null value for and it won't write them. And by sending an ID
of "START" or "END" it writes the appropriate STYLE tag to start or end
the CSS syntax.

Examples:

// return "#mylayer {position:absolute; left:50px; top:100px;}"
css('mylayer',50,100)

// return "#mylayer {position:relative; width:200px;
background-color:#ff0000; layer-background-color:#ff0000;}"
css('mylayer',null,null,200,null,'#ff0000')

115

// return "#mylayer {position:absolute; left:50px; top:100px;
width:200px; height:200px; clip:rect(0px 200px 200px 0px);}"
css('mylayer',50,100,200,200)

There are 2 options in this function:

css('START') // returns "<style type="text/css">"
css('END') // returns "</style>"

Here's an example of how to use the css() function to write a layer:

var str = css('START')+
css('mylayerDiv',50,100)+
css('END')
document.write(str)

You just set up a string containing all the CSS needed, and then
document write it to the browser. It is recommended that you only write
one set of CSS. If you try to do 2 of the above writing it will hang
Netscape 4.0 and 4.01. If it's absolutely necessary you can separate
each css writing into separate <script> tags.

The writeCSS() Function

writeCSS(str,showAlert)

The writeCSS() function (also included in css.js) just makes this a
little less of a hassle. The str parameter is the string of CSS that you
want to write to the page. writeCSS() will automatically add the
css('START') and css('END') values to the front and end of the string
and write the resultant string to the page:

writeCSS (css('mylayerDiv',50,100))

writeCSS() also has the showAlert option to display an alert dialog of
the CSS string being written to the page. This option is only for
debugging purposes:

writeCSS (
css('mylayer1Div',50,100)+ // must add css() calls together
css('mylayer2Div',50,100)+
css('mylayer3Div',50,100) ,1) // send true (or 1) to display a dialog

So the combination of these 2 functions are really great if plan on
doing this stuff a lot. I will be using these functions quite a bit.
Here's that last layer template based on the CSS function:

<html>
<head>
<title>The Dynamic Duo - Generated Layers Demo [CSS Function]</title>
<script language="JavaScript" src="../dynapi/css.js"></script>
<script language="JavaScript">
<!--

116

writeCSS(css('mylayerDiv',50,70,100,20,'yellow'))
//-->
</script>
</head>

<body bgcolor="#FFFFFF">

<div id="mylayerDiv">my layer</div>

</body>
</html>

Now that we have a good way to go about generating layers, we can start
getting to the whole reason for doing this. By generating layers in this
manner we have a great way to substitute static numbers in your CSS for
variables and begin getting into the real meat of dynamically generated
pages using DHTML.

Example:

var x = 20+15/5 var y = 100+50/5

writeCSS(css('mylayer',x,y))

This tactic will be used extensively in the upcoming lessons.

Generating Multiple Layers:

By doing loops you can use this technique to generate any number of
layers in any way you want. You could generate dozens of layers in
random positions, or create grids of layers.

Using Browser Width/Height

Even with the advent of the screen object, this can't be used reliably
to determine the actual size of the browser window. It is important to
know the exact width and height (to the pixel) of the browser to give us
the ability to generate layers based on these values. We can use those
value to generate layers that stretch to the width of the browser,
center layers, or right align them etc., thus giving layers extra
flexibility even though they are absolutely positioned.

The best way that I know to find the width/height of the browser is by
checking the following properties after the BODY tag. You must place
whatever code that is dependent on the width/height in SCRIPT located
after the body because in IE the body element is used:

In Netscape:

window.innerWidth window.innerHeight

In IE:

117

document.body.scrollWidth document.body.scrollHeight

However, these values don't take into consideration the scrollbar.
Usually you'll only be concerned about the vertical scrollbar, so you
can manually account for it by subtracting 20 from the width in IE, and
16 in Netscape (Netscape excludes the chrome window border). The
following is the template I use:

<BODY>

<SCRIPT LANGUAGE="JavaScript">

ns4 = (document.layers)? true:false
ie4 = (document.all)? true:false

winW = (ns4)? window.innerWidth-16 : document.body.offsetWidth-20
winH = (ns4)? window.innerHeight : document.body.offsetHeight

// write out the layers accordingly using the CSS function....
writeCSS(css('mylayer',0,0,winW,winH,'black') // one big black square)

</SCRIPT>

<!-- other HTML elements go here -->

<div id="mylayer"></div>

</BODY>

Note: this is the only situation where you should ever have to write CSS
within the body.

At any time after the winW and winH variables have been defined can they
be used (eg. init() function can use them)

Centering Layers

To use these values to center a layer you can do a little math to find
where the left/top co-ordinate should be. For example if your layer is
100px wide and 50px tall, you'll need to use the (winW-100)/2 for the
left coordinate, and (winH-50)/2 for the top coordinate.

And that translated into code is:

writeCSS (css('centerDiv',(winW-100)/2,(winH-50)/2,100,50,'blue'))

You can do similar statements to align a layer to the right or bottom of
the screen. The following example places layers in all four corners and
the center of the screen.

Netscape Resize Fix Function

// Netscape Resize Fix

118

 if (document.layers) {
 widthCheck = window.innerWidth
 heightCheck = window.innerHeight
 window.onResize = resizeFix
 }
 function resizeFix() {
 if (widthCheck != window.innerWidth || heightCheck !=
window.innerHeight)
 document.location.href = document.location.href
 }

This piece of code can be inserted into pages which suffer the common
problem when you resize the Netscape browser, all your layers loose
their positioning. That code will reload the page, again using the
browser width and height to check if the size has changed.

Liquid Layout Effect

(a derivative of the resize fix function)

A common practice amongst Table-lovers is to use 100% widths everywhere
to make the page stretch to fill with width of the browser. Well, us
DHTML-lovers can do that too. Just use the winW and winH variables as
described above, and add the Liquid Effect JavaScript file to your page
(along with the CSS Function):

<script language="JavaScript" src="../dynapi/css.js"></script>
<script language="JavaScript" src="../dynapi/liquid.js"></script>

That file contains the findWH() function which you may use to find the
winW and winH properties. However those properties have been tweaked so
that when you draw layers they will fit *exactly* to the width and
height of the window - not including the scrollbars or anything.

The real trick with making the page liquid is that the page must reload
in order for all the layers to be redrawn (to keep the layers
stretched). What you do is add the onResize event to the body tag:

<body bgcolor="#FFFFFF" onResize="makeLiquid()">

And presto, your page will reload when resized, and therefore redraw all
the layers to their desired positions and dimensions.

Cookie Functions

Cookies are a way to store a small piece of information in a visitors
browser. Some people get paranoid about them because they feel the web
authors are tracking them, but usually they are just used to gather
simple information about their visitors. Information such as:

how many times you've visited the site how you navigate the site (to

119

determine if it's navigation is good)
who you are and to give you a specific page tailored to you
your username and password to by-pass a login screen

Using cookies are not specific to DHTML or JavaScript, almost any
programming language for the web is capable to producing them such as
Java, Perl, ASP, C++ etc. In server-side languages this is done by
printing a line of text before the HTML content is shown. An advantage
that JavaScript has is that it can give you a cookie at any time you are
viewing a page, you don't have to go to another page in order to give a
cookie.

In the DynAPI there is a cookies.js file which you can use to easily
save, read, and delete cookies. Include the file and you'll have 3
functions:

saveCookie(name,value,days) The cookie's name is a variable of your
choice, it will be how you'll reference the cookie value. The value is
the piece of information that you want to store. It can be a String or
Number but will actually be stored as a String in either case. The days
is how long until the cookie will be stored before expiring. If you only
want to store the cookie for the current browser session, then 0 should
be the number of days.

saveCookie("favourite cookie","chocolate chip",360) // save for 1 year

readCookie(name) This will return the value of the cookie as a String.
If the cookie does not exist, it will return null. You'd usually read a
cookie like this:

var favcookie = readCookie('favourite cookie')

if (mycookie==null) { // cookie does not exist

} else { // cookie exists

}

If the value is a number you'll have to use parseInt() to make it an
integer.

deleteCookie(name) This will remove the cookie. Actually all it does is
re-save the cookie with a days value of -1, which means the cookie
expired yesterday.

deleteCookie('favourite cookie')

The example below will count the number of times that you've read the
page. When you reload the number will go up. I read the cookie value,
and write a sentence depending on the value of the cookie, then I
increment the counter using parseInt() to make sure it's a number, and
then re-save the cookie:

var count = readCookie('pagecount') // read the 'pagecount' cookie

120

if (count==null) { // if no cookie
document.write("never visiting this page before")
count = 0 // set counter to 0

}
else { // if cookie exists

document.write("visted this page "+count+" times before")
}

count = parseInt(count)+1 // increment the counter

saveCookie('pagecount',count,360) // save 'pagecount' cookie for 360
days

121

122

123

